Concentration of Measure for the Analysis of Randomized Algorithms

Concentration of Measure for the Analysis of Randomized Algorithms

By: Alessandro Panconesi (author), Devdatt P. Dubhashi (author)eBook
£15.59 RRP £21.60  You save £6.01 (28%)
Buy eBook  

Description

Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.

Create a review

Product Details

  • publication date: 31/10/2014
  • ID: 9781139637695
  • book language: en
  • publisher: Cambridge University Press
  • publisher imprint: Cambridge University Press

Supported Platforms

  • Ereader  
  • IPhone   Epub DRM Kobo
  • Android   Epub DRM Kobo
  • IPad   Epub DRM Kobo
  • Desktop-OSX   Epub DRM Kobo
  • Desktop-Windows   Epub DRM Kobo

Please note: The price displayed here is for information only as it may differ from the price currently offered at Kobobooks.com.
Please confirm the price prior to purchasing your eBook from Kobobooks.com.

Close