Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit

Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit

By: Aihui MaHam (author), Bryan M. Ham (author)Hardback

1 - 2 weeks availability

Description

A comprehensive study of analytical chemistry providing the basics of analytical chemistry and introductions to the laboratory * Covers the basics of a chemistry lab including lab safety, glassware, and common instrumentation * Covers fundamentals of analytical techniques such as wet chemistry, instrumental analyses, spectroscopy, chromatography, FTIR, NMR, XRF, XRD, HPLC, GC-MS, Capillary Electrophoresis, and proteomics * Includes ChemTech an interactive program that contains lesson exercises, useful calculators and an interactive periodic table * Details Laboratory Information Management System a program used to log in samples, input data, search samples, approve samples, and print reports and certificates of analysis

Create a review

About Author

Bryan M. Ham, Ph.D., has worked in analytical chemistry laboratories for over 25 years including petroleum, chemical, environmental, foodstuff, and life science research, and has a doctorate in analytical chemistry. He has published 15 research papers in peer reviewed journals and two books: Even Electron Mass Spectrometry with Biomolecule Applications (Wiley, 2008), and Proteomics of Biological Systems: Protein Phosphorylation Using Mass Spectrometry Techniques (Wiley, 2012). He is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection New York Laboratory. He is a member of the American Society of Mass Spectrometry (ASMS) and the American Chemical Society (ACS). Aihui MaHam, Ph.D., is an expert in nano-materials including the synthesis and characterization of chemical and biological nano-sensors. She is also an expert in the field of inorganic materials chemistry, and their characterization utilizing methodologies such as SEM, XRD, XRF and OES. She has published numerous research papers including a recent review entitled Protein-Based Nanomedicine Platforms for Drug Delivery (Small, 2009), which has been cited over 170 times by other researchers. She is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection New York Laboratory.

Contents

Preface xxiii Author Biographies xxv Acknowledgments xxvii 1 Chemist and Technician in the Analytical Laboratory 1 1.1 Introduction The Analytical Chemist and Technician 1 1.2 Today s Laboratory Chemist and Technician 1 1.2.1 Computers in the Laboratory 1 1.2.2 Laboratory Information Management Systems (LIMS) 1 1.3 ChemTech The Chemist and Technician Toolkit Companion 1 1.3.1 Introduction to ChemTech 1 1.3.1.1 Opening ChemTech 2 1.3.1.2 Interactive Periodic Table 2 1.4 Chapter Layout 2 1.4.1 Glassware, Chemicals, and Safety 2 1.4.2 Basic Math and Statistics 2 1.4.3 Graphing and Plotting 4 1.4.4 Making Laboratory Solutions 4 1.4.5 Titrimetric Analysis 4 1.4.6 Electrochemistry 5 1.4.7 Laboratory Information Management System (or Software) LIMS 5 1.4.8 Instrumental Analyses Spectroscopy 5 1.4.9 Instrumental Analyses Chromatography 5 1.4.10 Instrumental Analyses Mass Spectrometry 5 1.4.10.1 Mass Analyzers 5 1.4.10.2 Mass Ionization 5 1.4.11 Small Molecule and Macromolecule Analysis 5 1.5 Users of ChemTech 6 2 Introduction to the Analytical Laboratory 7 2.1 Introduction to the Laboratory 7 2.1.1 The Scientific Method 7 2.2 Laboratory Glassware 7 2.2.1 Volumetric Flasks 7 2.2.2 Beakers and Erlenmeyer Flasks 7 2.2.3 Graduated Cylinders 8 2.2.4 Pipettes 8 2.2.4.1 Steps for Using Pipette Bulb (a) 8 2.2.4.2 Steps for Using Pipette Bulb (b and c) 10 2.2.4.3 Autopipettes 11 2.2.5 Evaporating Dishes 11 2.2.6 Flames and Furnaces in the Laboratory 11 2.2.6.1 Bunsen Burners 11 2.2.6.2 Crucibles 11 2.2.6.3 Ashing Samples 11 2.2.6.4 Muffle Furnaces 14 2.2.7 Laboratory Fume Hoods 14 2.2.8 Drying Ovens 15 2.2.9 Balances 15 2.2.10 Refrigerators and Freezers 16 2.2.11 Test Tubes 16 2.2.12 Soxhlet Extractions 16 2.2.13 Vacuum Pumps 18 2.3 Conclusion 18 3 Laboratory Safety 19 3.1 Introduction 19 3.2 Proper Personal Protection and Appropriate Attire 19 3.2.1 Proper Eye Protection 19 3.2.2 Proper Laboratory Coats 20 3.3 Proper Shoes and Pants 20 3.4 Laboratory Gloves 20 3.4.1 Natural Rubber (Latex) 21 3.4.2 Nitrile 22 3.4.3 Neoprene 22 3.4.4 Butyl 22 3.4.5 Polyvinyl Chloride (PVC) 22 3.4.6 Polyvinyl Alcohol (PVA) 22 3.4.7 Viton 22 3.4.8 Silver Shield/4H 22 3.5 General Rules to Use Gloves 22 3.6 Material Safety Data Sheet (MSDS) 22 3.7 Emergency Eye Wash and Face Wash Stations 23 3.8 Emergency Safety Showers 24 3.9 Fire Extinguishers 24 3.9.1 Types of Fires 24 3.10 Clothing Fire in the Laboratory 25 3.11 Spill Cleanup Kits 25 3.12 Chemicals and Solvents 27 3.13 First Aid Kits 27 3.14 Gasses and Cylinders 29 3.15 Sharps Containers and Broken Glass Boxes 29 3.16 Occupational Safety and Health Administration (OSHA) 29 4 Basic Mathematics in the Laboratory 83 4.1 Introduction to Basic Math 83 4.2 Units and Metric System 83 4.2.1 Introduction to the Metric System 83 4.2.2 Units of the Metric System 83 4.2.3 Converting the SI Units 84 4.3 Significant Figures 84 4.3.1 Significant Figure Rules 84 4.4 Scientific Calculators 86 4.4.1 Example Calculator 86 4.4.2 Window s Calculator 86 4.4.2.1 Windows Scientific versus Standard Calculator 86 4.5 ChemTech Conversion Tool 89 4.5.1 Using the Conversion Tool 89 4.5.2 Closing the Conversion Tool 89 4.6 Chapter Key Concepts 89 4.7 Chapter Problems 92 5 Analytical Data Treatment (Statistics) 93 5.1 Errors in the Laboratory 93 5.1.1 Systematic Errors 93 5.1.2 Random Errors 93 5.2 Expressing Absolute and Relative Errors 94 5.3 Precision 94 5.3.1 Precision versus Accuracy 94 5.4 The Normal Distribution Curve 94 5.4.1 Central Tendency of Data 95 5.4.1.1 The Arithmetic Mean 95 5.4.1.2 The Median 95 5.4.1.3 The Mode 95 5.4.1.4 Sticking with the Mean 95 5.5 Precision of Experimental Data 96 5.5.1 The Range 96 5.5.2 The Average Deviation 96 5.5.3 The Standard Deviation 97 5.5.3.1 Root Mean Square 97 5.5.3.2 Sample Standard Deviation 97 5.5.3.3 Comparison of the Three Methods 97 5.5.3.4 Using the Scientific Calculator 97 5.5.3.5 Coefficient of Variation 97 5.6 Normal Distribution Curve of a Sample 97 5.7 ChemTech Statistical Calculations 98 5.7.1 Introduction to ChemTech Statistics 98 5.7.2 ChemTech Chapter 5 98 5.7.2.1 Entering Data 100 5.7.2.2 Calculating the Statistics 100 5.7.2.3 The Results Output 100 5.7.2.4 Results not Expected 100 5.7.2.5 Using ChemTech for Large Value Set 101 5.7.2.6 The Results Page 101 5.7.2.7 Resetting the Page 101 5.8 Student s Distribution t Test for Confidence Limits 101 5.8.1 Accuracy 101 5.8.2 The Student s t Test 102 5.8.3 Calculating the Student s t Value 102 5.8.4 Probability Level 103 5.8.5 Sulfate Concentration Confidence Limits 103 5.8.6 Sulfate t Distribution Curve 103 5.8.7 Determining Types of Error 103 5.8.7.1 Glucose Content 104 5.8.8 Determining Error in Methodology 104 5.8.8.1 Magnesium Primary Standard 104 5.9 Tests of Significance 104 5.9.1 Difference in Means 104 5.9.2 Null Hypothesis 105 5.10 Treatment of Data Outliers 105 5.10.1 The Q Test 105 5.10.2 The Tn Test 106 5.11 Chapter Key Concepts 106 5.12 Chapter Problems 107 6 Plotting and Graphing 109 6.1 Introduction to Graphing 109 6.1.1 The Invention of the Graph 109 6.1.2 Importance of Graphing 109 6.2 Graph Construction 109 6.2.1 Axis and Quadrants 110 6.3 Rectangular Cartesian Coordinate System 110 6.4 Curve Fitting 110 6.5 Redrawn Graph Example 110 6.6 Graphs of Equations 111 6.6.1 Introduction 111 6.6.2 Copper Sulfate Data 111 6.6.3 Plotting the Data 111 6.6.4 Best Fit Line 111 6.6.5 Point-Slope Equation of a Line 112 6.6.6 Finding the Slope (m) 112 6.6.7 Finding the y-Intercept (b) 112 6.6.8 Solving for x 113 6.6.9 Estimating the Slope and Intercept 113 6.6.10 Deriving the Equation from the Slope and Intercept 113 6.7 Least-Squares Method 114 6.7.1 Plotting Data with Scatter 114 6.7.2 Linear Regression 114 6.7.3 Curve Fitting the Data 114 6.8 Computer-Generated Curves 115 6.8.1 Using ChemTech to Plot Data 115 6.8.2 Entering the Data 115 6.8.3 Plotting the Data 116 6.8.4 Linear Regression of the Data 116 6.8.5 Adding the Best Fit Line 118 6.8.6 Entering a Large Set of Data 118 6.9 Calculating Concentrations 119 6.10 Nonlinear Curve Fitting 119 6.11 Chapter Key Concepts 123 6.12 Chapter Problems 124 7 Using Microsoft Excel(R) in the Laboratory 125 7.1 Introduction to Excel(R) 125 7.2 Opening Excel(R) in ChemTech 125 7.3 The Excel(R) Spreadsheet 125 7.3.1 Spreadsheet Menus and Quick Access Toolbars 127 7.4 Graphing in Excel(R) 127 7.4.1 Making Column Headings 127 7.4.2 Entering Data into Columns 128 7.4.3 Saving the Spreadsheet 129 7.4.4 Constructing the Graph 129 7.4.5 The Chart Wizard 130 7.4.6 The Chart Source Data 130 7.4.7 Chart Options 131 7.5 Charts in Excel(R) 2010 132 7.6 Complex Charting in Excel(R) 97-2003 132 7.6.1 Calcium Atomic Absorption (AAS) Data 132 7.6.2 Entering Ca Data into Spreadsheet 135 7.6.3 Average and Standard Deviation 135 7.6.4 Constructing the Calibration Curve 135 7.6.5 Entering the Chart Options 136 7.6.6 Error Bars 137 7.6.7 Trendline 138 7.7 Complex Charting in Excel(R) 2010 139 7.7.1 Entering the Data 139 7.7.2 Using the Formula Search Function 139 7.7.3 Inserting the Chart 140 7.7.4 Formatting the Chart 140 7.8 Statistical Analysis Using Excel(R) 141 7.8.1 Open and Save Excel(R) StatExp.xls 141 7.8.2 Sulfate Data 141 7.8.3 Excel(R) Confidence Function 142 7.8.4 Excel(R) Student s t Test 142 7.8.4.1 Spreadsheet Calculation I 142 7.8.4.2 Spreadsheet Calculation II 143 7.8.5 Excel(R) Tools Data Analysis 143 7.8.5.1 Analysis ToolPak 143 7.8.5.2 ToolPak Functions 143 7.8.5.3 Data Analysis t-Test: Two-Sample Assuming Unequal Variances 144 7.8.5.4 Analysis ToolPak F-test 145 7.8.5.5 Analysis ToolPak Statistical Summary 145 8 Making Laboratory Solutions 147 8.1 Introduction 147 8.2 Laboratory Reagent Fundamentals 147 8.3 The Periodic Table 147 8.3.1 Periodic Table Descriptive Windows 148 8.4 Calculating Formula Weights 148 8.5 Calculating the Mole 148 8.6 Molecular Weight Calculator 148 8.7 Expressing Concentration 148 8.7.1 Formal (F) Solutions 149 8.7.1.1 Formal (F) Solution Example 149 8.7.2 Molal (m) Solutions 149 8.7.2.1 Molal (m) Solution Simple Example 149 8.7.2.2 Molal (m) Solution Complex Example 149 8.7.3 Molar (M) Solutions 150 8.7.3.1 Molar (M) Solution Example 150 8.7.3.2 Molar (M) Solution of K2CO3 151 8.7.4 Normal (N) Solutions 151 8.7.4.1 Normal (N) Solution Calculation Example 152 8.8 The Parts per (PP) Notation 153 8.9 Computer-Based Solution Calculations 153 8.9.1 Computer-Based Concentration Calculation Molarity I 154 8.9.2 Computer-Based Concentration Calculation Molarity II 154 8.9.3 Computer-Based Concentration Calculation Normality I 155 8.9.4 Computer-Based Concentration Calculation Normality II 156 8.10 Reactions in Solution 157 8.11 Chapter Key Concepts 157 8.12 Chapter Problems 158 9 Acid Base Theory and Buffer Solutions 159 9.1 Introduction 159 9.2 Acids and Bases in Everyday Life 159 9.3 The Litmus Test 159 9.4 Early Acid Base Descriptions 160 9.5 Br nsted Lowry Definition 160 9.6 The Equilibrium Constant 161 9.7 The Acid Ionization Constant 161 9.8 Calculating the Hydrogen Ion Concentration 162 9.9 The Base Ionization Constant 163 9.9.1 OH Ion Concentration Example 163 9.9.2 Percent Ionization Example 164 9.10 Ion Product for Water 164 9.11 The Solubility Product Constant (Ksp) 164 9.11.1 Solubility of Silver(I) Thiocyanate 164 9.11.2 Solubility of Lithium Carbonate 166 9.12 The pH of a Solution 166 9.13 Measuring the pH 167 9.13.1 The Glass Electrode 167 9.14 Buffered Solutions Description and Preparing 168 9.14.1 Le Chatelier s Principle 169 9.14.2 Titration Curve of a Buffer 169 9.14.3 Natural Buffer Solutions 169 9.14.4 Calculating Buffer pH 170 9.14.5 Buffer pH Calculation I 170 9.15 ChemTech Buffer Solution Calculator 170 9.16 Chapter Key Concepts 171 9.17 Chapter Problems 172 10 Titration A Volumetric Method of Analysis 175 10.1 Introduction 175 10.2 Reacting Ratios 175 10.3 The Equivalence Point 176 10.4 Useful Relationships for Calculations 176 10.5 Deriving the Titration Equation 176 10.5.1 Titration Calculation Example 176 10.6 Titrations in ChemTech 177 10.6.1 Acid/Base Titrations Using Molar Solutions 177 10.6.2 Titration Calculation Example 177 10.7 Acid/Base Titration Endpoint (Equivalence Point) 178 10.8 Acid/Base Titration Midpoint 179 10.9 Acid/Base Titration Indicators 180 10.9.1 The Ideal Indicator 180 10.10 Titrations Using Normal Solutions 181 10.10.1 Normal Solution Titration Example 181 10.11 Polyprotic Acid Titration 181 10.12 ChemTech Calculation of Normal Titrations 182 10.13 Performing a Titration 183 10.13.1 Titration Glassware 183 10.13.2 Titration Steps 183 10.14 Primary Standards 184 10.15 Standardization of Sodium Hydroxide 185 10.15.1 NaOH Titrant Standardization Example 185 10.16 Conductometric Titrations (Nonaqueous Solutions) 186 10.17 Precipitation Titration (Mohr Method for Halides) 188 10.17.1 Basic Steps in Titration 188 10.17.2 Important Considerations 189 10.18 Complex Formation with Back Titration (Volhard Method for Anions) 189 10.18.1 Iron(III) as Indicator 189 10.18.2 Chloride Titration 189 10.18.3 The General Calculation 189 10.18.4 Chloride Titration 190 10.18.4.1 Volhard Chloride Analysis Example 190 10.18.4.2 The Titration Steps 190 10.19 Complex Formation Titration with EDTA for Cations 190 10.19.1 EDTA Metal Ion Complex Formation 191 10.19.2 The Stability Constant 191 10.19.3 Metal Ions Titrated 191 10.19.4 Influence of pH 191 10.19.5 Buffer and Hydroxide Complexation 192 10.19.6 Visual Indicators 193 10.20 Chapter Key Concepts 194 10.21 Chapter Problems 195 11 Oxidation Reduction (Redox) Reactions 197 11.1 Introduction 197 11.2 Oxidation and Reduction 197 11.3 The Volt 198 11.4 The Electrochemical Cell 198 11.5 Redox Reaction Conventions 198 11.5.1 Electrode Potential Tables 198 11.5.2 The Standard Hydrogen Electrode (SHE) 199 11.5.3 The SHE Half-Reaction 199 11.5.4 Writing the Standard Electrode Potentials 199 11.5.5 Drawing a Galvanic Cell 199 11.5.6 Calculating the Cell Potential 200 11.5.6.1 Iron and Zinc Cell 200 11.5.6.2 Nickel and Silver Cell 200 11.6 The Nernst Equation 200 11.6.1 Nernst Equation Example I 201 11.6.2 Nernst Equation Example II 201 11.6.3 Nernst Equation Example III 201 11.7 Determining Redox Titration Endpoints 202 11.8 Potentiometric Titrations 202 11.8.1 Detailed Potentiometer 202 11.8.2 Half-Reactions 202 11.8.3 The Nernst Equation 203 11.8.4 Assumed Reaction Completion 203 11.8.5 Calculated Potentials of Ce4+ 204 11.9 Visual Indicators Used in Redox Titrations 204 11.10 Pretitration Oxidation Reduction 205 11.10.1 Reducing Agents 205 11.10.2 Oxidizing Agents 205 11.11 Ion-Selective Electrodes 206 11.12 Chapter Key Concepts 206 11.13 Chapter Problems 207 12 Laboratory Information Management System (LIMS) 209 12.1 Introduction 209 12.2 LIMS Main Menu 209 12.3 Logging in Samples 209 12.4 Entering Test Results 209 12.5 Add or Delete Tests 211 12.6 Calculations and Curves 212 12.7 Search Wizards 214 12.7.1 Searching Archived Samples 214 12.7.2 General Search 214 12.7.3 Viewing Current Open Samples 216 12.8 Approving Samples 218 12.9 Printing Sample Reports 220 13 Ultraviolet and Visible (UV/Vis) Spectroscopy 221 13.1 Introduction to Spectroscopy in the Analytical Laboratory 221 13.2 The Electromagnetic Spectrum 221 13.3 Ultraviolet/Visible (UV/Vis) Spectroscopy 221 13.3.1 Wave and Particle Theory of Light 222 13.3.2 Light Absorption Transitions 223 13.3.3 The Color Wheel 224 13.3.4 Pigments 224 13.3.5 Inorganic Elemental Analysis 224 13.3.6 The Azo Dyes 225 13.3.7 UV-Visible Absorption Spectra 228 13.3.8 Beer s Law 228 13.4 UV/Visible Spectrophotometers 230 13.5 Special Topic (Example) Spectrophotometric Study of Dye Compounds 234 13.5.1 Introduction 234 13.5.2 Experimental Setup for Special Topic Discussion 235 13.5.3 UV/Vis Study of the Compounds and Complexes 235 13.6 Chapter Key Concepts 236 13.7 Chapter Problems 237 14 Fluorescence Optical Emission Spectroscopy 239 14.1 Introduction to Fluorescence 239 14.2 Fluorescence and Phosphorescence Theory 240 14.2.1 Radiant Energy Absorption 240 14.2.2 Fluorescence Principle Jablonski Diagram 240 14.2.3 Excitation and Electron Spin States 240 14.2.3.1 Quantum Numbers 241 14.2.3.2 Electron Spin States 241 14.3 Phosphorescence 241 14.4 Excitation and Emission Spectra 242 14.5 Rate Constants 243 14.5.1 Emission Times 243 14.5.2 Relative Rate Constants (k) 243 14.6 Quantum Yield Rate Constants 243 14.7 Decay Lifetimes 244 14.8 Factors Affecting Fluorescence 244 14.8.1 Excitation Wavelength (Instrumental) 244 14.8.2 Light Source (Instrumental) 244 14.8.3 Filters, Optics, and Detectors (Instrumental) 245 14.8.4 Cuvettes and Cells (Instrumental) 245 14.8.5 Structure (Sample) 246 14.8.5.1 Fluorescein and Beta-( )-Carotene 246 14.8.5.2 Diatomic Oxygen Molecular Orbital Diagram 246 14.8.5.3 Examples of Nonfluorescent and Fluorescent Compounds 247 14.8.5.4 Other Structural Influences 247 14.8.5.5 Scattering (Sample) 248 14.9 Quantitative Analysis and Beer Lambert Law 248 14.10 Quenching of Fluorescence 249 14.11 Fluorometric Instrumentation 249 14.11.1 Spectrofluorometer 249 14.11.1.1 Light Source 250 14.11.1.2 Monochromators 250 14.11.1.3 Photomultiplier tube (PMT) 251 14.11.2 Multidetection Microplate Reader 252 14.11.3 Digital Fluorescence Microscopy 252 14.11.3.1 Light Source 252 14.11.3.2 Filter Cube 253 14.11.3.3 Objectives and Grating 253 14.11.3.4 Charged-Coupled Device (CCD) 254 14.12 Special Topic Flourescence Study of Dye-A007 Complexes 255 14.13 Chapter Key Concepts 257 14.14 Chapter Problems 258 15 Fourier Transform Infrared (FTIR) Spectroscopy 261 15.1 Introduction 261 15.2 Basic IR Instrument Design 261 15.3 The Infrared Spectrum and Molecular Assignment 263 15.4 FTIR Table Band Assignments 264 15.5 FTIR Spectrum Example I 270 15.6 FTIR Spectrum Example II 270 15.7 FTIR Inorganic Compound Analysis 271 15.8 Chapter Key Concepts 271 15.9 Chapter Problems 273 16 Nuclear Magnetic Resonance (NMR) Spectroscopy 277 16.1 Introduction 277 16.2 Frequency and Magnetic Field Strength 277 16.3 Continuous-Wave NMR 278 16.4 The NMR Sample Probe 280 16.5 Pulsed Field Fourier Transform NMR 280 16.6 Proton NMR Spectra Environmental Effects 280 16.6.1 Chemical Shift 281 16.6.2 Spin Spin Splitting (Coupling) 281 16.6.3 Interpretation of NMR Spectra 283 16.6.3.1 2-Amino-3-Methyl-Pentanoic Acid 283 16.6.3.2 Unknown I 283 16.7 Carbon-13 NMR 283 16.7.1 Introduction 283 16.7.2 Carbon-13 Chemical Shift 284 16.7.3 Carbon-13 Splitting 286 16.7.4 Finding the Number of Carbons 286 16.7.5 Carbon-13 NMR Examples 286 16.8 Special Topic NMR Characterization of Cholesteryl Phosphate 287 16.8.1 Synthesis of Cholesteryl Phosphate 288 16.8.2 Single-Stage and High-Resolution Mass Spectrometry 288 16.8.3 Proton Nuclear Magnetic Resonance (1H-NMR) 289 16.8.4 Theoretical NMR Spectroscopy 289 16.8.5 Structure Elucidation 289 16.9 Chapter Key Concepts 292 16.10 Chapter Problems 293 References 294 17 Atomic Absorption Spectroscopy (AAS) 295 17.1 Introduction 295 17.2 Atomic Absorption and Emission Process 295 17.3 Atomic Absorption and Emission Source 296 17.4 Source Gases and Flames 296 17.5 Block Diagram of AAS Instrumentation 296 17.6 The Light Source 297 17.7 Interferences in AAS 299 17.8 Electrothermal Atomization Graphite Furnace 299 17.9 Instrumentation 300 17.10 Flame Atomic Absorption Analytical Methods 301 18 Atomic Emission Spectroscopy 303 18.1 Introduction 303 18.2 Elements in Periodic Table 303 18.3 The Plasma Torch 303 18.4 Sample Types 304 18.5 Sample Introduction 304 18.6 ICP-OES Instrumentation 305 18.6.1 Radially Viewed System 306 18.6.2 Axially Viewed System 308 18.6.3 Ergonomic Sample Introduction System 309 18.6.4 Innovative Optical Design 310 18.6.5 Advanced CID Camera Technology 310 18.7 ICP-OES Environmental Application Example 310 19 Atomic Mass Spectrometry 325 19.1 Introduction 325 19.2 Low-Resolution ICP-MS 325 19.2.1 The PerkinElmer NexION(R) 350 ICP-MS 325 19.2.2 Interface and Quadrupole Ion Deflector (QID) 325 19.2.3 The Collision/Reaction Cell 325 19.2.4 Quadrupole Mass Filter 328 19.3 High-Resolution ICP-MS 328 20 X-ray Fluorescence (XRF) and X-ray Diffraction (XRD) 333 20.1 X-Ray Fluorescence Introduction 333 20.2 X-Ray Fluorescence Theory 333 20.3 Energy-Dispersive X-Ray Fluorescence (EDXRF) 334 20.3.1 EDXRF Instrumentation 334 20.3.1.1 Basic Components 334 20.3.1.2 X-Ray Sources 334 20.3.1.3 Detectors 335 20.3.2 Commercial Instrumentation 337 20.4 Wavelength Dispersive X-Ray Fluorescence (WDXRF) 337 20.4.1 Introduction 337 20.4.2 WDXRF Instrumentation 338 20.4.2.1 Simultaneous WDXRF Instrumentation 338 20.4.2.2 Sequential WDXRF Instrumentation 340 20.5 Applications of XRF 341 20.6 X-ray Diffraction (XRD) 342 20.6.1 Introduction 342 20.6.2 X-Ray Crystallography 344 20.6.3 Bragg s Law 345 20.6.4 Diffraction Patterns 345 20.6.5 The Goniometer 346 20.6.6 XRD Spectra 346 21 Chromatography Introduction and Theory 351 21.1 Preface 351 21.2 Introduction to Chromatography 351 21.3 Theory of Chromatography 351 21.4 The Theoretical Plate Number N 355 21.5 Resolution RS 356 21.6 Rate Theory versus Plate Theory 357 21.6.1 Multiple Flow Paths or Eddy Diffusion (A Coefficient) 358 21.6.2 Longitudinal (Molecular) Diffusion (B Coefficient) 359 21.6.3 Mass Transfer Resistance between Phases (CS and CM Coefficients) 361 21.7 Retention Factor k 361 References 362 22 High Performance Liquid Chromatography (HPLC) 363 22.1 HPLC Background 363 22.2 Design and Components of HPLC 363 22.2.1 HPLC Pump 366 22.2.2 HPLC Columns 368 22.2.2.1 HPLC Column Stationary Phases 368 22.2.3 HPLC Detectors 372 22.2.4 HPLC Fraction Collector 374 22.2.5 Current Commercially Available HPLC Systems 375 22.2.6 Example of HPLC Analyses 375 22.2.6.1 HPLC Analysis of Acidic Pesticides 375 23 Solid-Phase Extraction 381 23.1 Introduction 381 23.2 Disposable SPE Columns 381 23.3 SPE Vacuum Manifold 381 23.4 SPE Procedural Bulletin 381 24 Plane Chromatography: Paper and Thin-Layer Chromatography 395 24.1 Plane Chromatography 395 24.2 Thin-Layer Chromatography 395 24.3 Retardation Factor (RF) in TLC 398 24.3.1 Example I 398 24.3.2 Example II 398 24.4 Plate Heights (H) and Counts (N) in TLC 398 24.5 Retention Factor in TLC 399 25 Gas-Liquid Chromatography 401 25.1 Introduction 401 25.2 Theory and Principle of GC 401 25.3 Mobile-Phase Carrier Gasses in GC 403 25.4 Columns and Stationary Phases 404 25.5 Gas Chromatograph Injection Port 406 25.5.1 Injection Port Septa 407 25.5.1.1 Merlin Microseal 407 25.5.2 Injection Port Sleeve (Liner) 408 25.5.2.1 Attributes of a Proper Liner 409 25.5.3 Injection Port Flows 412 25.5.4 Packed Column Injection Port 412 25.5.5 Capillary Column Split Injection Port 414 25.5.6 Capillary Column Splitless Injection Port 414 25.6 The GC Oven 415 25.7 GC Programming and Control 417 25.8 GC Detectors 418 25.8.1 Flame Ionization Detector (FID) 418 25.8.2 Electron Capture Detector (ECD) 418 25.8.3 Flame Photometric Detector (FPD) 419 25.8.4 Nitrogen Phosphorus Detector (NPD) 419 25.8.5 Thermal Conductivity Detector (TCD) 420 26 Gas Chromatography Mass Spectrometry (GC MS) 421 26.1 Introduction 421 26.2 Electron Ionization (EI) 421 26.3 Electron Ionization (EI)/OE Processes 422 26.4 Oleamide Fragmentation Pathways: OE M+ by Gas Chromatography/Electron Ionization Mass Spectrometry 425 26.5 Oleamide Fragmentation Pathways: EE [M+H]+ by ESI/Ion Trap Mass Spectrometry 426 26.6 Quantitative Analysis by GC/EI MS 429 26.7 Chapter Problems 431 References 433 27 Special Topics: Strong Cation Exchange Chromatography and Capillary Electrophoresis 435 27.1 Introduction 435 27.1.1 Overview and Comparison of HPLC and CZE 435 27.2 Strong Ion Exchange HPLC 435 27.3 CZE 435 27.3.1 Electroosmotic Flow (EOF) 436 27.3.2 Applications of CZE 436 27.4 Binding Constants by Cation Exchange and CZE 436 27.4.1 Ranking of Binding Constants 436 27.4.2 Experimental Setup 436 27.4.3 UV/Vis Study of the Compounds and Complexes 437 27.4.4 Fluorescence Study of the Dye/A007 Complexes 438 27.4.5 Computer Modeling of the Complex 438 27.4.6 Cation Exchange Liquid Chromatography Results 440 27.4.6.1 Description of HPLC Pseudophase 441 27.4.7 Capillary Electrophoresis (CE) 441 27.4.7.1 Introduction 441 27.4.7.2 CE Instrumentation 441 27.4.7.3 Theory of CE Separation 441 27.4.7.4 Results of CE Binding Analysis of Dyes and A007 441 27.4.7.5 Electropherograms of Dye/A007 Complexes 446 27.5 Comparison of Methods 446 27.6 Conclusions 448 References 448 28 Mass Spectrometry 449 28.1 Definition and Description of Mass Spectrometry 449 28.2 Basic Design of Mass Analyzer Instrumentation 449 28.3 Mass Spectrometry of Protein, Metabolite, and Lipid Biomolecules 451 28.3.1 Proteomics 451 28.3.2 Metabolomics 452 28.3.3 Lipidomics 454 28.4 Fundamental Studies of Biological Compound Interactions 455 28.5 Mass-to-Charge (m/z) Ratio: How the Mass Spectrometer Separates Ions 457 28.6 Exact Mass versus Nominal Mass 458 28.7 Mass Accuracy and Resolution 460 28.8 High-Resolution Mass Measurements 461 28.9 Rings Plus Double Bonds (r + db) 463 28.10 The Nitrogen Rule in Mass Spectrometry 464 28.11 Chapter Problems 465 References 465 29 Ionization in Mass Spectrometry 467 29.1 Ionization Techniques and Sources 467 29.2 Chemical Ionization (CI) 467 29.2.1 Positive CI 468 29.2.2 Negative CI 470 29.3 Atmospheric Pressure Chemical Ionization (APCI) 471 29.4 Electrospray Ionization (ESI) 472 29.5 Nanoelectrospray Ionization (Nano-ESI) 474 29.6 Atmospheric Pressure Photo Ionization (APPI) 477 29.6.1 APPI Mechanism 478 29.6.2 APPI VUV Lamps 478 29.6.3 APPI Sources 478 29.6.4 Comparison of ESI and APPI 479 29.7 Matrix Assisted Laser Desorption Ionization (MALDI) 483 29.8 FAB 485 29.8.1 Application of FAB versus EI 487 29.9 Chapter Problems 489 References 489 30 Mass Analyzers in Mass Spectrometry 491 30.1 Mass Analyzers 491 30.2 Magnetic and Electric Sector Mass Analyzer 491 30.3 Time-of-Flight Mass Analyzer (TOF/MS) 496 30.4 Time-of-Flight/Time-of-Flight Mass Analyzer (TOF TOF/MS) 497 30.5 Quadrupole Mass Filter 500 30.6 Triple Quadrupole Mass Analyzer (QQQ/MS) 502 30.7 Three-Dimensional Quadrupole Ion Trap Mass Analyzer (QIT/MS) 503 30.8 Linear Quadrupole Ion Trap Mass Analyzer (LTQ/MS) 506 30.9 Quadrupole Time-of-Flight Mass Analyzer (Q-TOF/MS) 507 30.10 Fourier Transform Ion Cyclotron Resonance Mass Analyzer (FTICR/MS) 508 30.10.1 Introduction 508 30.10.2 FTICR Mass Analyzer 509 30.10.3 FTICR Trapped Ion Behavior 509 30.10.4 Cyclotron and Magnetron Ion Motion 515 30.10.5 Basic Experimental Sequence 515 30.11 Linear Quadrupole Ion Trap Fourier Transform Mass Analyzer (LTQ FT/MS) 517 30.12 Linear Quadrupole Ion Trap Orbitrap Mass Analyzer (LTQ Orbitrap/MS) 518 30.13 Chapter Problems 527 References 527 31 Biomolecule Spectral Interpretation: Small Molecules 529 31.1 Introduction 529 31.2 Ionization Efficiency of Lipids 529 31.3 Fatty Acids 530 31.3.1 Negative Ion Mode Electrospray Behavior of Fatty Acids 532 31.4 Wax Esters 537 31.4.1 Oxidized Wax Esters 538 31.4.2 Oxidation of Monounsaturated Wax Esters by Fenton Reaction 538 31.5 Sterols 542 31.5.1 Synthesis of Cholesteryl Phosphate 542 31.5.2 Single-Stage and High-Resolution Mass Spectrometry 543 31.5.3 Proton Nuclear Magnetic Resonance (1H-NMR) 543 31.5.4 Theoretical NMR Spectroscopy 544 31.5.5 Structure Elucidation 544 31.6 Acylglycerols 548 31.6.1 Analysis of Monopentadecanoin 548 31.6.2 Analysis of 1,3-Dipentadecanoin 548 31.6.3 Analysis of Triheptadecanoin 550 31.7 ESI-Mass Spectrometry of Phosphorylated Lipids 551 31.7.1 Electrospray Ionization Behavior of Phosphorylated Lipids 551 31.7.2 Positive Ion Mode ESI of Phosphorylated Lipids 553 31.7.3 Negative Ion Mode ESI of Phosphorylated Lipids 556 31.8 Chapter Problems 556 References 557 32 Macromolecule Analysis 559 32.1 Introduction 559 32.2 Carbohydrates 559 32.2.1 Ionization of Oligosaccharides 561 32.2.2 Carbohydrate Fragmentation 561 32.2.3 Complex Oligosaccharide Structural Elucidation 564 32.3 Nucleic Acids 565 32.3.1 Negative Ion Mode ESI of a Yeast 76-mer tRNAPhe 569 32.3.2 Positive Ion Mode MALDI Analysis 573 32.4 Chapter Problems 576 References 577 33 Biomolecule Spectral Interpretation: Proteins 579 33.1 Introduction to Proteomics 579 33.2 Protein Structure and Chemistry 579 33.3 Bottom-up Proteomics: Mass Spectrometry of Peptides 580 33.3.1 History and Strategy 580 33.3.2 Protein Identification through Product Ion Spectra 584 33.3.3 High-Energy Product Ions 587 33.3.4 De Novo Sequencing 587 33.3.5 Electron Capture Dissociation 589 33.4 Top-Down Proteomics: Mass Spectrometry of Intact Proteins 590 33.4.1 Background 590 33.4.2 GP Basicity and Protein Charging 591 33.4.3 Calculation of Charge State and Molecular Weight 592 33.4.4 Top-Down Protein Sequencing 593 33.5 PTM of Proteins 594 33.5.1 Three Main Types of PTM 594 33.5.2 Glycosylation of Proteins 594 33.5.3 Phosphorylation of Proteins 596 33.5.3.1 Phosphohistidine as PTM 602 33.5.4 Sulfation of Proteins 608 33.5.4.1 Glycosaminoglycan Sulfation 608 33.5.4.2 Tyrosine Sulfation 609 33.6 Systems Biology and Bioinformatics 614 33.6.1 Biomarkers in Cancer 616 33.7 Chapter Problems 618 References 619 Appendix I: Chapter Problem Answers 621 Appendix II: Atomic Weights and Isotopic Compositions 627 Appendix III: Fundamental Physical Constants 631 Appendix IV: Redox Half Reactions 633 Appendix V: Periodic Table of Elements 637 Appendix VI: Installing and Running Programs 639 Index 641

Product Details

  • publication date: 10/03/2015
  • ISBN13: 9781118714843
  • Format: Hardback
  • Number Of Pages: 680
  • ID: 9781118714843
  • weight: 1800
  • ISBN10: 1118714849

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close