Applied Statistics: Regression and Analysis of Variance

Applied Statistics: Regression and Analysis of Variance

By: Felix Famoye (author), Bayo Lawal (author)Paperback

Up to 2 WeeksUsually despatched within 2 weeks


Applied Statistics presents a thorough treatment of the methods of regression and analysis of variance. The book focuses on conceptual understandings of statistical methods in regression and analysis of variance as well as the use of statistical software to obtain correct results. Real data examples from many fields of study are used to motivate the presentation and illustrate the concepts and methods. Almost all of the examples in the book are accompanied with their corresponding SAS programs. The R programs are available on the following website: This textbook is user-friendly and simplifies the presentation of complicated material. Applied Statistics requires an understanding of introductory statistics courses and is suitable for both junior and senior undergraduate students.

About Author

Bayo Lawal is professor of statistics at Kwara State University, Nigeria. He received his bachelor of science degree with honors in mathematics from the Ahmadu Bello University, Nigeria, and his master's degree in biometry from the University of Reading, UK. His PhD in statistics is from the University of Essex, UK. Lawal has taught for several years at the University of Ilorin, Nigeria; St. Cloud State University, St. Cloud, Minnesota; and Temple University in Philadelphia. He has also served as chair of the Departments of Statistics at St. Cloud State University and at the University of Ilorin. He served as dean of the School of Sciences in Auburn University at Montgomery between 2004 and 2008, as well as the dean of the School of Arts and Sciences at the American University of Nigeria between 2008 and 2011. He currently serves as head of the Department of Statistics and Mathematical Sciences at Kwara State University. Felix Famoye is a professor and a consulting statistician in the Department of Mathematics at Central Michigan University in Mount Pleasant, Michigan. He received his bachelor of science degree with honors in statistics from the University of Ibadan, Nigeria, and his PhD in statistics from the University of Calgary under the Canadian Commonwealth Scholarship Program. He received the College of Science and Technology Outstanding Teaching Award and the University Excellence in Teaching Award. He also received the College of Science and Technology Outstanding Research Award and the University President's Award for Outstanding Research and Creative Activity. As a Fulbright scholar, he visited the University of Lagos in Nigeria.


1: Introduction 2: Simple Linear Regression 3: Inferences on Parameter Estimates 4: Mutiple Linear Regression 5: Regression Diagnostics and Remedial Methods 6: Multiple and Partial Correlations 7: Model Selection Strategies 8: Use of Dummy Variables in Regression Analysis 9: Polynomial Regression 10: Logistic Regression 11: Count Data Regression Models 12: Regression with Censored of Truncated Data 13: Nonlinear Regression 14: One-Way Analysis of Variance 15: Two-Factor Analysis of Variance 16: Analysis of Covariance 17: Randomized Complete Block Design 18: Non Orthogonal Classification

Product Details

  • ISBN13: 9780761861713
  • Format: Paperback
  • Number Of Pages: 544
  • ID: 9780761861713
  • weight: 1474
  • ISBN10: 0761861718

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly