Arithmetic Differential Operators over the p-adic Integers (London Mathematical Society Lecture Note Series 396)

Arithmetic Differential Operators over the p-adic Integers (London Mathematical Society Lecture Note Series 396)

By: Claire C. Ralph (author), Santiago R. Simanca (author)Paperback

Up to 2 WeeksUsually despatched within 2 weeks


The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of arithmetic differential operators on this field. Buium's theory of arithmetic jet spaces is then developed succinctly in order to define arithmetic operators in general. Features of the book include a comparison of the behaviour of these operators over the p-adic integers and their behaviour over the unramified completion, and a discussion of the relationship between characteristic functions of p-adic discs and arithmetic differential operators that disappears as soon as a single root of unity is adjoined to the p-adic integers. This book is essential reading for researchers and graduate students who want a first introduction to arithmetic differential operators over the p-adic integers.

About Author

Claire C. Ralph is currently a Department of Energy Computational Science Graduate Fellow at Cornell University where she is pursuing her doctorate in theoretical chemistry. Her thesis research is in developing efficient, highly parallel algorithms for quantum mechanical computations. Santiago R. Simanca is currently a Distinguished Visiting Professor on a Chaire Regional Senior des Pays de la Loire at the University of Nantes, where he is pursuing his interest and collaborations in global analysis and geometric PDEs. He had been on the faculty in the Departments of Mathematics at the State University of New York, Stony Brook, and at the University of New Mexico, Albuquerque. He received his PhD from the Massachusetts Institute of Technology.


1. Introduction; 2. The p-adic numbers Q p; 3. Some classical analysis on Q p; 4. Analytic functions on Z p; 5. Arithmetic differential operators on Z p; 6. A general view of arithmetic differential operators; 7. Analyticity of arithmetic differential operators; 8. Characteristic functions: standard p-adic coordinates; 9. Characteristic functions: harmonic arithmetic coordinates; 10. Differences between arithmetic differential operators over Z p and Z p^{unr}; References.

Product Details

  • ISBN13: 9781107674141
  • Format: Paperback
  • Number Of Pages: 146
  • ID: 9781107674141
  • weight: 250
  • ISBN10: 110767414X

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly