
Conceptual Mathematics: A First Introduction to Categories (2nd Revised edition)
By
F. William Lawvere (Author) Stephen H. Schanuel (Author)
Paperback
In Stock
Quantity
Description
In the last 60 years, the use of the notion of category has led to a remarkable unification and simplification of mathematics. Conceptual Mathematics introduces this tool for the learning, development, and use of mathematics, to beginning students and also to practising mathematical scientists. This book provides a skeleton key that makes explicit some concepts and procedures that are common to all branches of pure and applied mathematics. The treatment does not presuppose knowledge of specific fields, but rather develops, from basic definitions, such elementary categories as discrete dynamical systems and directed graphs; the fundamental ideas are then illuminated by examples in these categories. This second edition provides links with more advanced topics of possible study. In the new appendices and annotated bibliography the reader will find concise introductions to adjoint functors and geometrical structures, as well as sketches of relevant historical developments. Worked examples or Exercises; 12 Tables, unspecified; 575 Line drawings, unspecified
About the Author
F. William Lawvere is a Professor Emeritus of Mathematics at the State University of New York. He has previously held positions at Reed College, the University of Chicago and the City University of New York, as well as visiting Professorships at other institutions worldwide. At the 1970 International Congress of Mathematicians in Nice, Prof. Lawvere delivered an invited lecture in which he introduced an algebraic version of topos theory which united several previously 'unrelated' areas in geometry and in set theory; over a dozen books, several dozen international meetings, and hundreds of research papers have since appeared, continuing to develop the consequences of that unification. Stephen H. Schanuel is a Professor of Mathematics at the State University of New York at Buffalo. He has previously held positions at Johns Hopkins University, Institute for Advanced Study and Cornell University, as well as lecturing at institutions in Denmark, Switzerland, Germany, Italy, Colombia, Canada, Ireland, and Australia. Best known for Schanuel's Lemma in homological algebra (and related work with Bass on the beginning of algebraic K-theory), and for Schanuel's Conjecture on algebraic independence and the exponential function, his research thus wanders from algebra to number theory to analysis to geometry and topology.
More Details
- Contributor: F. William Lawvere
- Imprint: Cambridge University Press
- ISBN13: 9780521719162
- Number of Pages: 404
- Packaged Dimensions: 171x244x25mm
- Packaged Weight: 780
- Format: Paperback
- Publisher: Cambridge University Press
- Release Date: 2009-07-30
- Binding: Paperback / softback
- Biography: F. William Lawvere is a Professor Emeritus of Mathematics at the State University of New York. He has previously held positions at Reed College, the University of Chicago and the City University of New York, as well as visiting Professorships at other institutions worldwide. At the 1970 International Congress of Mathematicians in Nice, Prof. Lawvere delivered an invited lecture in which he introduced an algebraic version of topos theory which united several previously 'unrelated' areas in geometry and in set theory; over a dozen books, several dozen international meetings, and hundreds of research papers have since appeared, continuing to develop the consequences of that unification. Stephen H. Schanuel is a Professor of Mathematics at the State University of New York at Buffalo. He has previously held positions at Johns Hopkins University, Institute for Advanced Study and Cornell University, as well as lecturing at institutions in Denmark, Switzerland, Germany, Italy, Colombia, Canada, Ireland, and Australia. Best known for Schanuel's Lemma in homological algebra (and related work with Bass on the beginning of algebraic K-theory), and for Schanuel's Conjecture on algebraic independence and the exponential function, his research thus wanders from algebra to number theory to analysis to geometry and topology.
Delivery Options
Home Delivery
Store Delivery
Free Returns
We hope you are delighted with everything you buy from us. However, if you are not, we will refund or replace your order up to 30 days after purchase. Terms and exclusions apply; find out more from our Returns and Refunds Policy.