Cooperative and Graph Signal Processing: Principles and Applications

Cooperative and Graph Signal Processing: Principles and Applications

By: Cedric Richard (editor), Petar Djuric (editor)Paperback

In Stock

£68.40 RRP £76.00  You save £7.60 (10%) With FREE Saver Delivery

Description

Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings.

About Author

Petar M. Djuric received the B.S. and M.S. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, respectively, and the Ph.D. degree in electrical engineering from the University of Rhode Island, Kingston, RI, USA. He is currently a Professor with the Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA. His research has been in the area of signal and information processing with primary interests in the theory of signal modeling, detection, and estimation; Monte Carlo-based methods; signal and information processing over networks; machine learning, RFID and the IoT. He has been invited to lecture at many universities in the United States and overseas. Prof. Djuric was a recipient of the IEEE Signal Processing Magazine Best Paper Award in 2007 and the EURASIP Technical Achievement Award in 2012. In 2008, he was the Chair of Excellence of Universidad Carlos III de Madrid-Banco de Santander. From 2008 to 2009, he was a Distinguished Lecturer of the IEEE Signal Processing Society. He has been on numerous committees of the IEEE Signal Processing Society and of many professional conferences and workshops. He is the Editor-in-Chief of the IEEE Transactions on Signal and Information Processing over Networks. Prof. Djuric is a Fellow of IEEE and EURASIP. Cedric Richard received the Dipl.-Ing. and the M.S. degrees in 1994, and the Ph.D. degree in 1998, from Compiegne University of Technology, France, all in Electrical and Computer Engineering. He is a Full Professor at the Universite Nice Sophia Antipolis, France. He was a junior member of the Institut Universitaire de France in 2010-2015. His current research interests include adaptation and learning, statistical signal processing, and network science. Cedric Richard is the author of over 250 papers. He was the General Co-Chair of the IEEE SSP Workshop that was held in Nice, France, in 2011. He was the Technical Co-Chair of EUSIPCO 2015 that was held in Nice, France, and of the IEEE CAMSAP Workshop 2015 that was held in Cancun, Mexico. He serves as a Senior Area Editor of the IEEE Transactions on Signal Processing and as an Associate Editor of the IEEE Transactions on Signal and Information Processing over Networks since 2015. He is also an Associate Editor of Signal Processing Elsevier since 2009. Cedric Richard is a member of the IEEE Machine Learning for Signal Processing (IEEE MLSP TC) Technical Committee, and served as member of the IEEE Signal Processing Theory and Methods (IEEE SPTM TC) Technical Committee in 2009-2014.

Contents

PART 1 BASICS OF INFERENCE OVER NETWORKS CHAPTER 1 Asynchronous Adaptive Networks CHAPTER 2 Estimation and Detection Over Adaptive Networks CHAPTER 3 Multitask Learning Over Adaptive Networks With Grouping Strategies CHAPTER 4 Bayesian Approach to Collaborative Inference in Networks of Agents CHAPTER 5 Multiagent Distributed Optimization CHAPTER 6 Distributed Kalman and Particle Filtering CHAPTER 7 Game Theoretic Learning PART 2 SIGNAL PROCESSING ON GRAPHS CHAPTER 8 Graph Signal Processing CHAPTER 9 Sampling and Recovery of Graph Signals CHAPTER 10 Bayesian Active Learning on Graphs CHAPTER 11 Design of Graph Filters and Filterbanks CHAPTER 12 Statistical Graph Signal Processing: Stationarity and Spectral Estimation CHAPTER 13 Inference of Graph Topology CHAPTER 14 Partially Absorbing Random Walks: A Unified Framework for Learning on Graphs PART 3 DISTRIBUTED COMMUNICATIONS, NETWORKING, AND SENSING CHAPTER 15 Methods for Decentralized Signal Processing With Big Data CHAPTER 16 The Edge Cloud: A Holistic View of Communication, Computation, and Caching CHAPTER 17 Applications of Graph Connectivity to Network Security CHAPTER 18 Team Methods for Device Cooperation in Wireless Networks CHAPTER 19 Cooperative Data Exchange in Broadcast Networks CHAPTER 20 Collaborative Spectrum Sensing in the Presence of Byzantine Attack PART 4 SOCIAL NETWORKS CHAPTER 21 Dynamics of Information Diffusion and Social Sensing CHAPTER 22 Active Sensing of Social Networks: Network Identification From Low-Rank Data CHAPTER 23 Dynamic Social Networks: Search and Data Routing CHAPTER 24 Information Diffusion and Rumor Spreading CHAPTER 25 Multilayer Social Networks CHAPTER 26 Multiagent Systems: Learning, Strategic Behavior, Cooperation, and Network Formation PART 5 APPLICATIONS CHAPTER 27 Genomics and Systems Biology CHAPTER 28 Diffusion Augmented Complex Extended Kalman Filtering for Adaptive Frequency Estimation in Distributed Power Networks CHAPTER 29 Beacons and the City: Smart Internet of Things CHAPTER 30 Big Data CHAPTER 31 Graph Signal Processing on Neuronal Networks Index

Product Details

  • ISBN13: 9780128136775
  • Format: Paperback
  • Number Of Pages: 866
  • ID: 9780128136775
  • weight: 1840
  • ISBN10: 0128136774

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close