Etale Cohomology (PMS-33), Volume 33

Etale Cohomology (PMS-33), Volume 33

By: James S. Milne (author)Hardback

Special OrderSpecial Order item not currently available. We'll try and order for you.


One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced etale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to etale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and etale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of etale sheaves and elementary etale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in etale cohomology -- those of base change, purity, Poincare duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

About Author

J. S. Milne is Professor Emeritus of Mathematics at the University of Michigan at Ann Arbor.


*Frontmatter, pg. i*Contents, pg. vii*Preface, pg. ix*Terminology and Conventions, pg. xiii*Chapter I. Etale Morphisms, pg. 1*Chapter II. Sheaf Theory, pg. 46*Chapter III. Cohomology, pg. 82*Chapter IV. The Brauer Group, pg. 136*Chapter V. The Cohomology of Curves and Surfaces, pg. 155*Chapter VI. The Fundamental Theorems, pg. 220*Appendix A. Limits, pg. 304*Appendix B. Spectral Sequences, pg. 307*Appendix C. Hypercohomology, pg. 310*Bibliography, pg. 313*Index, pg. 321

Product Details

  • ISBN13: 9780691082387
  • Format: Hardback
  • Number Of Pages: 344
  • ID: 9780691082387
  • weight: 624
  • ISBN10: 0691082383
  • translations: English
  • language of text: English

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly