Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

By: Stephan Russenschuck (author)Hardback

Up to 2 WeeksUsually despatched within 2 weeks


Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

About Author

Stephan Russenschuck received his doctorate in electrical engineering from the Darmstadt University of Technology, Germany, specializing in optimization of electrical machines. He joined the European Organization for Nuclear Research (CERN) in 1991 to work on the electromagnetic design of superconducting magnets for the LHC particle accelerator. During the years of LHC development and construction he was responsible for a magnet model construction, the electrical quality assurance during hardware installation, and the polarities of the nearly 11,000 magnet elements. Dr. Russenschuck is the author of the ROXIE program package and a leading authority on mathematical optimization, electromagnetic design, and engineering of accelerator magnets. For seventeen years he has served as a member of the Board of the International COMPUMAG Society. Since 2000 Dr. Russenschuck has been lecturering at the Vienna University of Technology, at the Joint Universities Accelerator School (JUAS), and the CERN Accelerator School (CAS).


Magnets for Accelerators Algebraic Structures and Vector Fields Classical Vector Analysis Maxwell's Equations and Boundary Value Problems Fields and Potentials of Line Currents Field Harmonics Iron-Dominated Magnets Coil-Dominated Magnets Complex Analysis Methods for Magnet Design Field Diffusion Elementary Beam Optics and Field Requirements Reference Frames and Magnet Polarities Finite-Element Formulations Discretization Coupling of Boundary and Finite Elements Superconductor Magnetization Interstrand Coupling Currents Quench Simulation Differential Geometry Applied to Coil-End Design Mathematical Optimization Techniques Material Property Data for Quench Simulations

Product Details

  • ISBN13: 9783527407699
  • Format: Hardback
  • Number Of Pages: 778
  • ID: 9783527407699
  • weight: 1592
  • ISBN10: 3527407693

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly