Fourier Analysis (Graduate Studies in Mathematics)

Fourier Analysis (Graduate Studies in Mathematics)

By: Javier Duoandikoetxea (author)Hardback

Up to 2 WeeksUsually despatched within 2 weeks


Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderon and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by Jose Luis Rubio de Francia at the same university. Motivated by the study of ""Fourier"" series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, $H^1$, $BMO$ spaces, and the $T1$ theorem, are discussed.Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between $H^1$, $BMO$, and singular integrals; and Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the $T1$ theorem, which has been of crucial importance in the field.This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, 'Notes and Further Results' have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.


Fourier series and integrals The Hardy-Littlewood maximal function The Hilbert transform Singular integrals (I) Singular integrals (II) $H^1$ and $BMO$ Weighted inequalities Littlewood-Paley theory and multipliers The $T1$ theorem Bibliography Index.

Product Details

  • ISBN13: 9780821821725
  • Format: Hardback
  • Number Of Pages: 222
  • ID: 9780821821725
  • ISBN10: 0821821725

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly