Inductors and Transformers for Power Electronics

Inductors and Transformers for Power Electronics

By: Vencislav Cekov Valchev (author), Alex van den Bossche (author)Hardback

4 - 6 days availability

£120.65 RRP £127.00  You save £6.35 (5%) With FREE Saver Delivery

Description

Although they are some of the main components in the design of power electronic converters, the design of inductors and transformers is often still a trial-and-error process due to a long working-in time for these components. Inductors and Transformers for Power Electronics takes the guesswork out of the design and testing of these systems and provides a broad overview of all aspects of design. Inductors and Transformers for Power Electronics uses classical methods and numerical tools such as the finite element method to provide an overview of the basics and technological aspects of design. The authors present a fast approximation method useful in the early design as well as a more detailed analysis. They address design aspects such as the magnetic core and winding, eddy currents, insulation, thermal design, parasitic effects, and measurements. The text contains suggestions for improving designs in specific cases, models of thermal behavior with various levels of complexity, and several loss and thermal measurement techniques. This book offers in a single reference a concise representation of the large body of literature on the subject and supplies tools that designers desperately need to improve the accuracy and performance of their designs by eliminating trial-and-error.

Create a review

Contents

FUNDAMENTALS OF MAGNETIC THEORY Basic Laws of Magnetic Theory Magnetic Materials Magnetic Circuits References FAST DESIGN APPROACH INCLUDING EDDY CURRENT LOSSES Fast Design Approach Examples Conclusions Appendix 2.A.1: Core Size Scale Law for Ferrites in Non-Saturated Thermal Limited Design Appendix 2.A.2: Eddy Current Losses for Wide Frequency Appendix 2.A.3: MathCAD Example Files References SOFT MAGNETIC MATERIALS Magnetic Core Materials Comparison and Applications of the Core Materials in Power Electronics Losses in Soft Magnetic Materials Ferrite Core Losses with Non-Sinusoidal Voltage Waveforms Wide Frequency Model of Magnetic Sheets Including Hysteresis Effects Appendix 3.A: Power and Impedance of Magnetic Sheets References COIL WINDING AND ELECTRICAL INSULATION Filling Factor Wire Length Physical Aspects of Breakdown Insulation Requirements and Standards Thermal Requirements and Standards Magnetic Component Manufacturing Sheet References EDDY CURRENTS IN CONDUCTORS Introduction Basic Approximations Losses in Rectangular Conductors Quadrature of the Circle Method for Round Conductors Losses of a Current Carrying Round Conductor in 2-D Approach Losses of a Round Conductor in a Uniform Transverse AC Field Low Frequency 2-D Approximation Method for Round Conductors Wide Frequency Method for Calculating Eddy Current Losses in Windings Losses in Foil Windings Losses in Planar Windings Appendix 5.A.1: Eddy Current 1-D Model for Rectangular Conductors Appendix 5.A.2: Low Frequency 2-D Models for Eddy Current Losses in Round Wires Appendix 5.A.3: Field Factor For Inductors References THERMAL ASPECTS Fast Thermal Design Approach (Level 0 Thermal Design) Single Thermal Resistance Design Approach (Level 1 Thermal Design) Classic Heat Transfer Mechanisms Thermal Design Utilizing a Resistance Network Contribution to Heat Transfer Theory of Magnetic Components Transient Heat Transfer Summary Appendix 6.A: Accurate Natural Convection Modeling for Magnetic Components References PARASITIC CAPACITANCES IN MAGNETIC COMPONENTS Capacitance Between Windings: Inter Capacitance Self-Capacitance of a Winding: Intra Capacitance Capacitance Between the Windings and the Magnetic Material Practical Approaches for Decreasing the Effects of Parasitic Capacitances References INDUCTOR DESIGN Air Coils and Related Shapes Inductor Shapes Typical Ferrite Inductor Shapes Fringing in Wire-Wound Inductors with Magnetic Cores Eddy Currents in Inductor Windings Foil Wound Inductors Inductor Types Depending on Application Design Examples of Different Types of Inductors Fringing Coefficients For Gapped-Wire-Wound Inductors Analitical Modeling of Combined Litz Wire-Full Wire Inductors References TRANSFORMER DESIGN Transformer Design in Power Electronics Magnetizing Inductance Leakage Inductance Using Parallel Wires and Litz Wires Interleaved Windings Superimposing Frequency Components Superimposing Modes References OPTIMAL COPPER/CORE LOSS RATIO IN MAGNETIC COMPONENTS Simplified Approach Loss Minimization in the General Case Loss Minimization Without Eddy Current Losses Loss Minimization Including Low-Frequency Eddy Current Losses Summary Examples References MEASUREMENTS Introduction Temperature Measurements Power Losses Measurements Measurement of Inductances Core Loss Measurements Measurement of Parasitic Capacitances Combined Measuring Instruments References APPENDIX A: RMS VALUES OF WAVEFORMS Definitions RMS Values of Some Basic Waveforms RMS Values of Common Waveforms APPENDIX B: MAGNETIC CORE DATA ETD Core Data (Economic Transformer Design Core) EE Core Data Planar EE Core Data ER Core Data UU Core Data Ring Core Data (Toroid Core) P Core Data (Pot Core) PQ Core Data RM Core Data APPENDIX C: COPPER WIRES DATA Round Wire Data American Wire Gauge Data Litz Wire Data APPENDIX D: MATHEMATICAL FUNCTIONS References INDEX

Product Details

  • publication date: 24/03/2005
  • ISBN13: 9781574446791
  • Format: Hardback
  • Number Of Pages: 478
  • ID: 9781574446791
  • weight: 816
  • ISBN10: 1574446797

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close