Introduction to Quantum Groups and Crystal Bases (Graduate Studies in Mathematics)

Introduction to Quantum Groups and Crystal Bases (Graduate Studies in Mathematics)


Up to 1 WeekUsually despatched within 1 week


The notion of a 'quantum group' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras. In particular, the theory of 'crystal bases' or 'canonical bases' developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups.The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.


Lie algebras and Hopf algebras Kac-Moody algebras Quantum groups Crystal bases Existence and uniqueness of crystal bases Global bases Young tableaux and crystals Crystal graphs for classical Lie algebras Solvable lattice models Perfect crystals Combinatorics of Young walls Bibliography Index of symbols Index.

Product Details

  • ISBN13: 9780821828748
  • Format: Hardback
  • ID: 9780821828748
  • ISBN10: 0821828746

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly