Invariants Under Tori of Rings of Differential Operators and Related Topics (Memoirs of the American Mathematical Society No. 650)

Invariants Under Tori of Rings of Differential Operators and Related Topics (Memoirs of the American Mathematical Society No. 650)

By: Ian M. Musson (author), Michel van den Bergh (author)Paperback

1 - 2 weeks availability

Description

If $G$ is a reductive algebraic group acting rationally on a smooth affine variety $X$, then it is generally believed that $D(X)^G$ has properties very similar to those of enveloping algebras of semisimple Lie algebras. In this book, the authors show that this is indeed the case when $G$ is a torus and $X=k^r\times (k^*)^s$. They give a precise description of the primitive ideals in $D(X)^G$ and study in detail the ring theoretical and homological properties of the minimal primitive quotients of $D(X)^G$. The latter are of the form $B^x=D(X)^G/({\mathfrak g}-\chi({\mathfrak g}))$ where ${\mathfrak g}=\textnormal{Lie}(G)$, $\chi\in {\mathfrak g}^\ast$ and ${\mathfrak g}-\chi({\mathfrak g})$ is the set of all $v-\chi(v)$ with $v\in {\mathfrak g}$. They occur as rings of twisted differential operators on toric varieties. It is also proven that if $G$ is a torus acting rationally on a smooth affine variety, then $D(X[LAMBDA]!/G)$ is a simple ring.

Create a review

Contents

Introduction Notations and conventions A certain class of rings Some constructions The algebras introduced by S. P. Smith The Weyl algebras Rings of differential operators for torus invariants Dimension theory for $B^\chi$ Finite global dimension Finite dimensional representations An example References.

Product Details

  • publication date: 15/10/1998
  • ISBN13: 9780821808856
  • Format: Paperback
  • Number Of Pages: 85
  • ID: 9780821808856
  • weight: 198
  • ISBN10: 0821808850

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close