Isotopic Analysis: Fundamentals and Applications Using ICP-MS

Isotopic Analysis: Fundamentals and Applications Using ICP-MS

By: Patrick Degryse (editor), Frank Vanhaecke (editor)Hardback

1 - 2 weeks availability

Description

Edited by two very well-known and respected scientists in the field, this excellent practical guide is the first to cover the fundamentals and a wide range of applications, as well as showing readers how to efficiently use this increasingly important technique. From the contents: * The Isotopic Composition of the Elements * Single-Collector ICP-MS * Multi-Collector ICP-MS * Advances in Laser Ablation - Multi-Collector ICP-MS * Correction for Instrumental Mass Discrimination in Isotope Ratio Determination with Multi-Collector ICP-MS * Reference Materials in Isotopic Analysis * Quality Control in Isotope Ratio Applications * Determination of Trace Elements and Elemental Species Using Isotope Dilution ICP-MS * Geochronological Dating * Application of Multi-Collector ICP-MS to Isotopic Analysis in Cosmochemistry * Establishing the Basis for Using Stable Isotope Ratios of Metals as Paleoredox Proxies * Isotopes as Tracers of Elements Across the Geosphere-Biosphere Interface * Archaeometric Applications * Forensics Applications * Nuclear Applications * The Use of Stable Isotope Techniques for Studying Mineral and Trace Element Metabolism in Humans * Isotopic Analysis via Multi-Collector ICP-MS in Elemental Speciation A must-have for newcomers as well as established scientists seeking an overview of isotopic analysis via ICP-MS.

Create a review

About Author

Frank Vanhaecke ( 1966) is Professor in Analytical Chemistry at Ghent University (Belgium), where he leads the 'Atomic & Mass Spectrometry & A&MS' research unit that focuses on the determination, speciation and isotopic analysis of (trace) elements via ICP-mass spectrometry (ICPMS).One of the specific topics studied, is isotope ratio determination using single- and multi-collector ICP-MS in the context of elemental assay via isotope dilution, tracer experiments with stable isotopes and the use of small natural variations in the isotopic composition of metals and metalloids for provenance determination and for obtaining better insight into biological, environmental and geological problems. Frank is (co-)author of some 200 scientific papers in international journals, 15 book chapters and more than 350 conference presentations and is a Fellow of the Royal Society of Chemistry RSC. In 2011, he received a 'European Award for Plasma Spectrochemistry' for his contributions to the field. Patrick Degryse ( 1974) is Professor of Archaeometry at the department of Earth and Environmental Sciences and director of the Centre for Archaeological Sciences at the Katholieke Universiteit Leuven (Belgium). His main research efforts focus on the use of mineral raw materials in ancient ceramic, glass, metal and building stone production, using petrographical, mineralogical and isotope geochemical techniques. He teaches geology, geochemistry, archaeometry and natural sciences in archaeology, and outside the lab is active in several field projects in the eastern Mediterranean. Patrick is author of over 100 scientific papers in international journals, conference proceedings and books and is an A. von Humboldt Fellow and European Research Council Grantee.

Contents

Preface XV List of Contributors XIX 1 The Isotopic Composition of the Elements 1 Frank Vanhaecke and Kurt Kyser 1.1 Atomic Structure 1 1.2 Isotopes 2 1.3 Relation Between Atomic Structure and Natural Abundance of Elements and Isotopes 3 1.4 Natural Isotopic Composition of the Elements 5 1.4.1 Elements with Radiogenic Nuclides 7 1.4.1.1 Radioactive Decay 7 1.4.1.2 Elements with Radiogenic Nuclides 9 1.4.2 Effects Caused by Now Extinct Radionuclides 13 1.4.3 Mass-Dependent Isotope Fractionation 13 1.4.3.1 Isotope Fractionation in Physical Processes 15 1.4.3.2 Isotope Fractionation in Chemical Reactions 16 1.4.4 Mass-Independent Isotope Fractionation 20 1.4.5 Interaction of Cosmic Rays with Terrestrial Matter 23 1.4.6 Human-Made Variations 24 References 26 2 Single-Collector Inductively Coupled Plasma Mass Spectrometry 31 Frank Vanhaecke 2.1 Mass Spectrometry 31 2.2 The Inductively Coupled Plasma Ion Source 32 2.3 Basic Operating Principles of Mass Spectrometers 34 2.3.1 Mass Spectrometer Characteristics 34 2.3.1.1 Mass Resolution 34 2.3.1.2 Abundance Sensitivity 35 2.3.1.3 Mass Spectral Range 36 2.3.1.4 Scanning Speed 36 2.3.2 Quadrupole Filter 36 2.3.3 Double-Focusing Sector Field Mass Spectrometer 38 2.3.4 Time-of-Flight Analyzer 43 2.3.5 Comparison of Characteristics 45 2.4 Quadrupole-Based ICP-MS 45 2.5 Sample Introduction Strategies in ICP-MS 47 2.6 Spectral Interferences 50 2.6.1 Cool Plasma Conditions 51 2.6.2 Multipole Collision/Reaction Cell 52 2.6.2.1 Overcoming Spectral Interference via Chemical Resolution 53 2.6.2.2 Overcoming Spectral Interference via Collisional Deceleration and Kinetic Energy Discrimination 55 2.6.3 High Mass Resolution with Sector Field ICP-MS 55 2.7 Measuring Isotope Ratios with Single-Collector ICP-MS 56 2.7.1 Isotope Ratio Precision 57 2.7.1.1 Poisson Counting Statistics 57 2.7.1.2 Isotope Ratio Precision with Single-Collector ICP-MS 58 2.7.2 Detector Issues 62 2.7.2.1 Electron Multiplier Operating Principles 62 2.7.2.2 Detector Dead Time 62 2.7.3 Instrumental Mass Discrimination 66 References 68 3 Multi-Collector Inductively Coupled Plasma Mass Spectrometry 77 Michael Wieser, Johannes Schwieters, and Charles Douthitt 3.1 Introduction 77 3.2 Early Multi-Collector Mass Spectrometers 78 3.3 Variable Multi-Collector Mass Spectrometers 79 3.4 Mass Resolution and Resolving Power 81 3.5 Three-Isotope Plots for Measurement Validation 84 3.6 Detector Technologies for Multi-Collection 87 3.7 Conclusion 90 References 91 4 Advances in Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry 93 Takafumi Hirata 4.1 Precision of Isotope Ratio Measurements 93 4.2 Stable Signal Intensity Profiles: Why So Important? 94 4.3 Signal Smoothing Device 99 4.4 Multiple Ion Counting 101 4.5 Isotope Fractionation During Laser Ablation and Ionization 102 4.6 Standardization of the Isotope Ratio Data 107 Acknowledgments 108 References 108 5 Correction of Instrumental Mass Discrimination for Isotope Ratio Determination with Multi-Collector Inductively Coupled Plasma Mass Spectrometry 113 Juris Meija, Lu Yang, Zolta'n Mester, and Ralph E. Sturgeon 5.1 Historical Introduction 113 5.2 Mass Bias in MC-ICP-MS 114 5.3 Systematics of Mass Bias Correction Models 115 5.3.1 External Gravimetric Calibration 116 5.3.2 Internal Double-Spike Calibration 117 5.3.3 Internal Calibration (Inter-Element) 117 5.3.4 External Bracketing Calibration (Inter-Element) 117 5.4 Logic of Conventional Correction Models 118 5.5 Pitfalls with Some Correction Models 119 5.5.1 Linear Law 119 5.5.2 Exponential Versus the Power Law 120 5.6 Integrity of the Correction Models 120 5.6.1 Russell s Law 120 5.6.2 Discrimination Exponent 121 5.6.3 Discrimination Function 122 5.6.4 Second-Order Terms 124 5.7 The Regression Model 124 5.8 Calibration with Double Spikes 126 5.8.1 Caveat of the Model Choice 129 5.9 Calibration with Internal Correction 130 5.9.1 Intra-Elemental Correction 130 5.9.2 Inter-Elemental Correction 130 5.10 Uncertainty Evaluation 131 5.10.1 Uncertainty Modeling and the Double Spikes 132 5.11 Conclusion 133 References 134 6 Reference Materials in Isotopic Analysis 139 Jochen Vogl and Wolfgang Pritzkow 6.1 Introduction 139 6.2 Terminology 140 6.3 Determination of Isotope Amount Ratios 145 6.4 Isotopic Reference Materials 149 6.4.1 General 149 6.4.2 Historical Development 149 6.4.3 Requirements for Isotopic Reference Materials 151 6.5 Present Status, Related Problems, and Solutions 153 6.5.1 Present Status 153 6.5.2 Related Problems 154 6.5.3 Solution 156 6.6 Conclusion and Outlook 157 References 158 7 Quality Control in Isotope Ratio Applications 165 Thomas Meisel 7.1 Introduction 165 7.2 Terminology and Definitions 168 7.3 Measurement Uncertainty 174 7.3.1 Influence Quantities 177 7.3.1.1 Sampling 177 7.3.1.2 Sample Preparation 177 7.3.1.3 Isotope Amount Ratio Determination 177 7.3.1.4 Data Presentation with Isotope Notation 179 7.3.2 Example of Uncertainty Budget Estimation When Using Isotope Dilution 180 7.3.3 Alternative Approach 181 7.3.4 How to Establish Metrological Traceability 181 7.3.5 Method Validation 182 7.3.5.1 Limits of Detection, of Determination, and of Quantitation 182 7.3.5.2 Inter-Laboratory Studies 184 7.4 Conclusion 185 References 185 8 Determination of Trace Elements and Elemental Species Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry 189 Klaus G. Heumann 8.1 Introduction 189 8.2 Fundamentals 190 8.2.1 Principles of Isotope Dilution Mass Spectrometry 190 8.2.2 Elements Accessible to ICP-IDMS Analysis 194 8.2.3 Selection of Spike Isotope and Optimization of Its Amount 195 8.2.4 Uncertainty Budget and Limit of Detection 199 8.3 Selected Examples of Trace Element Determination via ICP-IDMS 200 8.3.1 Trends in ICP-IDMS Trace Analysis 200 8.3.2 Direct Determination of Trace Elements in Solid Samples via Laser Ablation and Electrothermal Vaporization ICP-IDMS 201 8.3.3 Representative Examples of Trace Element Determination via ICP-IDMS 203 8.3.3.1 Determination of Trace Amounts of Silicon in Biological Samples 203 8.3.3.2 Trace Element Analysis of Fossil Fuels 205 8.3.3.3 Trace Element Analysis via On-Line Photochemical Vapor Generation 207 8.3.3.4 Determination of Trace Amounts of Platinum Group Elements 208 8.3.3.5 Determination of Ultra-Trace Amounts of Transuranium Elements 211 8.3.4 ICP-IDMS in Elemental Speciation 212 8.3.4.1 Principles of ICP-IDMS in Elemental Speciation 212 8.3.4.2 Species-Specific ICP-IDMS 214 8.3.4.3 Species-Unspecific ICP-IDMS 221 References 230 9 Geochronological Dating 235 Marlina A. Elburg 9.1 Geochronology: Principles 235 9.1.1 Single Phase and Isochron Dating 235 9.1.2 Closure Temperature 237 9.2 Practicalities 240 9.2.1 Isobaric Overlap 240 9.2.2 ICP-MS versus TIMS for Geochronology 241 9.3 Various Isotopic Systems 242 9.3.1 U/Th-Pb 242 9.3.1.1 LA ICP-MS U Pb Dating of Zircon 244 9.3.1.2 Laser Ablation U/Th-Pb Dating of Other Phases 254 9.3.1.3 Solution Pb Pb Dating 257 9.3.2 Lu Hf System 257 9.3.2.1 Lu Hf Isochrons with Garnet 258 9.3.2.2 Lu Hf on Phosphates 259 9.3.2.3 Zircon Hf Isotopic Model Ages 259 9.3.3 Re(-Pt) Os System 261 9.3.3.1 Re Os Molybdenite Dating 262 9.3.3.2 Re Os Dating of Black Shales 262 9.3.3.3 Pt-Re Os on Mantle Peridotites 263 9.4 Systems for Which ICP-MS Analysis Brings Fewer Advantages 265 Acknowledgments 266 References 266 10 Application of Multiple-Collector Inductively Coupled Plasma Mass Spectrometry to Isotopic Analysis in Cosmochemistry 275 Mark Rehkamper, Maria Schonbachler, and Rasmus Andreasen 10.1 Introduction 275 10.2 Extraterrestrial Samples 276 10.2.1 Introduction 276 10.2.2 Classification of Meteorites 277 10.2.3 Chondritic Meteorites 279 10.2.4 Non-Chondritic Meteorites 281 10.3 Origin of Cosmochemical Isotopic Variations 281 10.3.1 Radiogenic Isotope Variations from the Decay of Long-Lived Radioactive Nuclides 282 10.3.2 Radiogenic Isotope Variations from the Decay of Extinct Radioactive Nuclides 282 10.3.3 Nucleosynthetic Isotope Anomalies 283 10.3.4 Mass-Dependent Isotope Fractionation 284 10.3.5 Cosmogenic Isotope Anomalies 284 10.4 Use of MC-ICP-MS in Cosmochemistry 285 10.4.1 Specific Advantages of MC-ICP-MS 286 10.4.2 Analytical Procedures 287 10.5 Applications of MC-ICP-MS in Cosmochemistry 289 10.5.1 Nucleosynthetic Isotope Anomalies 289 10.5.2 Long-Lived Radioactive Decay Systems 293 10.5.2.1 The 87Rb87Sr Decay System 293 10.5.2.2 The 147Sm143Nd Decay System 293 10.5.2.3 The 176Lu176Hf Decay System 294 10.5.2.4 The U/Th-Pb Decay Systems 295 10.5.3 Extinct Radioactive Decay Systems 297 10.5.4 Stable Isotope Fractionation 300 10.5.5 Cosmogenic Isotope Variations 306 10.6 Conclusion 307 Acknowledgments 308 References 308 11 Establishing the Basis for Using Stable Isotope Ratios of Metals as Paleoredox Proxies 317 Laura E. Wasylenki 11.1 Introduction 317 11.2 Isotope Ratios of Metals as Paleoredox Proxies 319 11.2.1 Molybdenum Isotope Ratios and Global Ocean Paleoredox 320 11.2.2 Cr Isotope Ratios and Paleoredox Conditions of the Atmosphere 329 11.2.3 Uranium Isotope Ratios and Marine Paleoredox 338 11.3 Diagenesis: a Critical Area for Further Work 344 References 346 12 Isotopes as Tracers of Elements Across the Geosphere Biosphere Interface 351 Kurt Kyser 12.1 Description of the Geosphere Biosphere Interface 351 12.2 Elements That Typify the Geosphere Biosphere Interface 354 12.3 Microbes at the Interface 355 12.4 Element Tracing in Environmental Science and Exploration of Metal Deposits 356 12.5 Isotopes as Indicators of Paleoenvironments 360 12.6 Tracing the Geosphere Effect on Vegetation and Animals 360 12.7 Tracing in the Marine Environment 364 12.8 Future Directions 367 References 368 13 Archeometric Applications 373 Patrick Degryse 13.1 Introduction 373 13.2 Current Applications 375 13.2.1 Lead 375 13.2.2 Strontium 377 13.2.2.1 Inorganics: Glass and Iron 377 13.2.2.2 Organics: Skeletal Matter 378 13.2.3 Neodymium 379 13.2.4 Osmium 379 13.3 New Applications 380 13.3.1 Copper 380 13.3.2 Tin 380 13.3.3 Antimony 380 13.3.4 Boron 381 13.4 Conclusion 382 References 382 14 Forensic Applications 391 Marty'n Resano and Frank Vanhaecke 14.1 Introduction 391 14.1.1 What is Forensics? 391 14.1.2 The Role of ICP-MS in Forensics 391 14.2 Forensic Applications Based on ICP-MS Isotopic Analysis 393 14.2.1 Crime Scene Investigation 393 14.2.2 Nuclear Forensics 396 14.2.3 Food Authentication 399 14.2.4 Monitoring Environmental Pollution 404 14.2.5 Other Applications 408 14.3 Future Outlook 411 Acknowledgments 412 References 412 15 Nuclear Applications 419 Scott C. Szechenyi and Michael E. Ketterer 15.1 Introduction 419 15.2 Rationale 419 15.3 Process Control and Monitoring in the Nuclear Industry 422 15.4 Isotopic Studies of the Distribution of U and Pu in the Environment 424 15.5 Nuclear Forensics 429 15.6 Prospects for Future Developments 431 Acknowledgment 431 References 432 16 The Use of Stable Isotope Techniques for Studying Mineral and Trace Element Metabolism in Humans 435 Thomas Walczyk 16.1 Essential Elements 435 16.2 Stable Isotopic Labels Versus Radiotracers 436 16.3 Quantification of Stable Isotopic Tracers 438 16.4 Isotope Labeling Techniques 442 16.5 Concepts of Using Tracers in Studies of Element Metabolism in Humans 444 16.5.1 Overview 444 16.5.2 Fecal Balance Studies (Single Isotopic Label) 444 16.5.3 Fecal Balance Studies (Double Isotopic Label) 445 16.5.4 Plasma Appearance 446 16.5.5 Urinary Monitoring 447 16.5.6 Compartmental Modeling 447 16.5.7 Tissue Retention 448 16.5.8 Element Turnover Studies 449 16.5.9 Isotope Fractionation Effects 450 16.6 ICP-MS in Stable Isotope-Based Metabolic Studies 451 16.6.1 Measurement Precision 451 16.6.2 Mass Spectrometric Sensitivity 454 16.6.3 Measurement Accuracy and Quality Control 454 16.7 Element-by-Element Review 458 16.7.1 Calcium 458 16.7.2 Iron 462 16.7.3 Zinc 464 16.7.4 Magnesium 469 16.7.5 Selenium 471 16.7.6 Copper 474 16.7.7 Molybdenum 476 Acknowledgments 477 References 478 17 Isotopic Analysis via Multi-Collector Inductively Coupled Plasma Mass Spectrometry in Elemental Speciation 495 Vladimir N. Epov, Sylvain Berail, Christophe Pecheyran, David Amouroux, and Olivier F.X. Donard 17.1 Introduction 495 17.2 Advantage of On-Line versus Off-Line Separation of Elemental Species 497 17.3 Coupling Chromatography with MC-ICP-MS 498 17.3.1 Instrumentation: LC, GC, HPLC, and IC Coupled with MC-ICP-MS 498 17.3.1.1 Liquid Chromatography 500 17.3.1.2 Gas Chromatography 500 17.3.2 Acquisition, Mass Bias Correction, and Data Treatment Strategy 503 17.3.2.1 Signal Acquisition 503 17.3.2.2 Mass Bias Correction 504 17.3.2.3 Data Treatment Strategy 504 17.3.3 Consequences of the Transient Nature of the Signal 507 17.3.3.1 Shape and Width of the Peak 507 17.3.3.2 Drift of the Isotope Ratios During Peak Elution 507 17.4 Environmental and Other Applications 509 17.4.1 Mercury 509 17.4.2 Lead 511 17.4.3 Sulfur 511 17.4.4 Antimony 512 17.4.5 Halogens 512 17.5 Conclusion and Future Trends 513 References 515 Index 519

Product Details

  • publication date: 06/06/2012
  • ISBN13: 9783527328963
  • Format: Hardback
  • Number Of Pages: 550
  • ID: 9783527328963
  • weight: 1130
  • ISBN10: 3527328963

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close