Layer Potential Techniques in Spectral Analysis (Mathematical Surveys and Monographs v. 153)

Layer Potential Techniques in Spectral Analysis (Mathematical Surveys and Monographs v. 153)

By: Habib Ammari (author), Hyeonbae Kang (author), Hyundae Lee (author)Hardback

1 - 2 weeks availability

£74.50 With FREE Saver Delivery


Since the early part of the twentieth century, the use of integral equations has developed into a range of tools for the study of partial differential equations. This includes the use of single- and double-layer potentials to treat classical boundary value problems. The aim of this book is to give a self-contained presentation of an asymptotic theory for eigenvalue problems using layer potential techniques with applications in the fields of inverse problems, band gap structures, and optimal design, in particular the optimal design of photonic and phononic crystals. Throughout this book, it is shown how powerful the layer potentials techniques are for solving not only boundary value problems but also eigenvalue problems if they are combined with the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. The general approach in this book is developed in detail for eigenvalue problems for the Laplacian and the Lame system in the following two situations: one under variation of domains or boundary conditions and the other due to the presence of inclusions. The book will be of interest to researchers and graduate students working in the fields of partial differential equations, integral equations, and inverse problems. Researchers in engineering and physics may also find this book helpful.

Create a review

Product Details

  • publication date: 15/03/2009
  • ISBN13: 9780821847848
  • Format: Hardback
  • Number Of Pages: 202
  • ID: 9780821847848
  • ISBN10: 0821847848

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly