Lectures on K3 Surfaces (Cambridge Studies in Advanced Mathematics 158)

Lectures on K3 Surfaces (Cambridge Studies in Advanced Mathematics 158)

By: Daniel Huybrechts (author)Hardback

In Stock

£44.99 RRP £49.99  You save £5.00 (10%) With FREE Saver Delivery


K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin-Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Create a review

About Author

Daniel Huybrechts is a professor at the Mathematical Institute of the University of Bonn. He previously held positions at the Universite Denis Diderot Paris 7 and the University of Cologne. He is interested in algebraic geometry, particularly special geometries with rich algebraic, analytic, and arithmetic structures. His current work focuses on K3 surfaces and higher dimensional analogues. He has published four books.


Preface; 1. Basic definitions; 2. Linear systems; 3. Hodge structures; 4. Kuga-Satake construction; 5. Moduli spaces of polarised K3 surfaces; 6. Periods; 7. Surjectivity of the period map and Global Torelli; 8. Ample cone and Kahler cone; 9. Vector bundles on K3 surfaces; 10. Moduli spaces of sheaves on K3 surfaces; 11. Elliptic K3 surfaces; 12. Chow ring and Grothendieck group; 13. Rational curves on K3 surfaces; 14. Lattices; 15. Automorphisms; 16. Derived categories; 17. Picard group; 18. Brauer group.

Product Details

  • publication date: 19/09/2016
  • ISBN13: 9781107153042
  • Format: Hardback
  • Number Of Pages: 504
  • ID: 9781107153042
  • ISBN10: 1107153042

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly