Materials under Extreme Loadings: Application to Penetration and Impact

Materials under Extreme Loadings: Application to Penetration and Impact

By: Ioan R. Ionescu (editor), George Z. Voyiadjis (editor), Eric Buzaud (editor)Hardback

Up to 2 WeeksUsually despatched within 2 weeks

Description

This book presents recent and cutting edge advances in our understanding of key aspects of the response of materials under extreme loads that take place during high velocity impact and penetration. The focus of the content is on the numerous challenges associated with characterization and modeling of complex interactions that occur during these highly dynamic events.

About Author

Eric Buzaud is head of the Shock Physics Group at the Commissariat l'Energie Atomique, Gramat, France. Ioan R. Ionescu is Professor in the Department of Engineering Sciences at the University of Paris 13 in France. George Z. Voyiadjis is the Boyd Professor in the Department of Civil and Environmental Engineering at Louisiana State University in the USA.

Contents

Preface xv Chapter 1. Geomaterials Under Extreme Loading: The Natural Case 1 Philippe LAMBERT and Herve TRUMEL 1.1. Introduction 1 1.2. Natural impacts 2 1.3. Discussion 27 1.4. Conclusions 32 1.5. Bibliography 33 PART 1. EXPERIMENTAL CHARACTERIZATION 45 Chapter 2. The Shock Properties of Concrete and Related Materials 47 Kostas TSEMBELIS, David J. CHAPMAN, Christopher H. BRAITHWAITE, John E. FIELD and William G. PROUD 2.1. Introduction 47 2.2. Experimental studies 53 2.3. Conclusion 65 2.4. Acknowledgments 65 2.5. Bibliography 66 Chapter 3. Comparison of Shocked Sapphire and Alumina 69 Geremy KLEISER, Lalit CHHABILDAS and William REINHART 3.1. Abstract 69 3.2. Introduction 70 3.3. Material 71 3.4. Experimental method 72 3.5. Experimental results 73 3.6. Conclusions 84 3.7. Acknowledgments 84 3.8. Bibliography 84 Chapter 4. Observations of Ballistic Impact Damage in Glass Laminate 87 Stephan BLESS 4.1. Introduction 87 4.2. Transient measurements 88 4.3. Post-test measurements 90 4.4. Multiple impacts 97 4.5. Discussion and summary 97 4.6. Acknowledgments 98 4.7. Bibliography 98 Chapter 5. Experimental Analysis of Concrete Behavior Under High Confinement 101 Xuan Hong VU, Yann MALECOT, Laurent DAUDEVILLE and Eric BUZAUD 5.1. Introduction 101 5.2. Experimental device 102 5.3. Influence of the water/cement ratio 105 5.4. Influence of the coarse aggregate size 106 5.5. Influence of the cement paste volume 113 5.6. Conclusion and future work 116 5.7. Acknowledgment 118 5.8. Bibliography 118 Chapter 6. 3D Imaging and the Split Cylinder Fracture of Cement-Based Composites 121 Eric LANDIS 6.1. Introduction 121 6.2. Methods and materials 122 6.3. Experiments and analysis 126 6.4. Experimental results 128 6.5. Conclusions 129 6.6. Bibliography 130 Chapter 7. Testing Conditions on Kolsky Bar 131 Weinong CHEN 7.1. Introduction 131 7.2. Kolsky bar 132 7.3. Limitations of the Kolsky bar 133 7.4. Methods for conducting valid Kolsky bar experiments 136 7.5. Conclusions 142 7.6. Bibliography 143 PART 2. MATERIAL MODELING 145 Chapter 8. Experimental Approach and Modeling of the Dynamic Tensile Behavior of a Micro-Concrete 147 Pascal FORQUIN and Benjamin ERZAR 8.1. Introduction 147 8.2. Experimental device 149 8.3. Data processing 151 8.4. Experimental results 154 8.5. Modeling of the damage process in concrete at high strain-rates (the Denoual, Forquin, Hild model) 158 8.6. Conclusion 172 8.7. Bibliography 175 Chapter 9. Toward Physically-Based Explosive Modeling: Meso-Scale Investigations 179 Herve TRUMEL, Philippe LAMBERT, Guillaume VIVIER and Yves SADOU 9.1. Introduction 179 9.2. Methodology 181 9.3. The material: microstructure and macroscopic mechanical behavior 182 9.4. Samples from unitary experiments 185 9.5. Analysis of a recovered target 193 9.6. Discussion 198 9.7. Conclusion and future work 204 9.8. Acknowledgments 204 9.9. Bibliography 204 Chapter 10. Coupled Viscoplastic Damage Model for Hypervelocity Impact Induced Damage in Metals and Composites 209 George Z. VOYIADJIS 10.1. Introduction 209 10.2. Theoretical preliminaries for high velocity impact 212 10.3. A coupled rate-dependent (viscoplasticity) continuum damage theory 214 10.4. Computational aspects of the proposed theory 220 10.5. Numerical applications 228 10.6. Conclusions 240 10.7. Bibliography 241 Chapter 11. High-Pressure Behavior of Concrete: Experiments and Elastic/Viscoplastic Modeling 247 Martin J. SCHMIDT, Oana CAZACU and Mark L. GREEN 11.1. Introduction 247 11.2. Experimental study 249 11.3. Elastic-viscoplastic model development 254 11.4. Conclusions 263 11.5. Bibliography 264 Chapter 12. The Virtual Penetration Laboratory: New Developments 267 Mark D. ADLEY, Andreas O. FRANK, Kent T. DANIELSON, Stephen A. AKERS, James L. O DANIEL and Bruce PATTERSON 12.1. Introduction 267 12.2. Constitutive model development 268 12.3. Perforation simulations 278 12.4. Penetration simulations 282 12.5. CSPC penetration resistance equation 284 12.6. Conclusions 287 12.7. Acknowledgment 288 12.8. Bibliography 288 Chapter 13. Description of the Dynamic Fragmentation of Glass with a Meso-Damage Model 291 Xavier BRAJER, Francois HILD and Stephane ROUX 13.1. Introduction 291 13.2. Experimental results 292 13.3. Fragmentation analysis 294 13.4. Microcracking analysis 299 13.5. A meso-damage approach 302 13.6. Conclusion 306 13.7. Acknowledgments 307 13.8. Bibliography 307 PART 3. NUMERICAL SIMULATION TECHNIQUES 311 Chapter 14. An Approach to Generate Random Localizations in Lagrangian Numerical Simulations 313 Jacques PETIT 14.1. Introduction 313 14.2. Numerical modeling 314 14.3. Electromagnetic compression and its regular use 318 14.4. Numerical simulations without rupture: copper and nickel samples 321 14.5. Numerical simulations with rupture: TA6V4 samples 323 14.6. Conclusion 328 14.7. Bibliography 330 Chapter 15. X-FEM for the Simulation of Dynamic Crack Propagation 333 Alain COMBESCURE 15.1. Energy conservation when a crack propagates: a key issue 333 15.2. Dynamic crack propagation laws 339 15.3. Experiments interpretation 341 15.4. Bibliography 348 Chapter 16. DEM Model of a Rigid Missile Impact on a Thin Concrete Slab 351 Frederic DONZE, Wen-Jie SHIU and Laurent DAUDEVILLE 16.1. Introduction 351 16.2. The DEM model 353 16.3. Modeling of the impact tests 355 16.4. Influence of reinforcement ratio 358 16.5. Influence of the nose shape of missile 361 16.6. Conclusion 365 16.7. Bibliography 365 Chapter 17. The Lattice Discrete Particle Model (LDPM) for the Numerical Simulation of Concrete Behavior Subject to Penetration 369 Gianluca CUSATIS 17.1. Introduction 369 17.2. Review of LDPM formulation 371 17.3. Uniaxial compression strength tests 375 17.4. Three-point bending tests 377 17.5. Multiaxial compression strength tests 378 17.6. Hopkinson bar tests 380 17.7. Penetration through reinforced concrete slabs 382 17.8. Closing remark 384 17.9. Acknowledgments 385 17.10. Bibliography 385 Chapter 18. An Improved Contact Algorithm for Multi-Material Continuum Codes 389 Kenneth C. WALLS and David L. LITTLEFIELD 18.1. Introduction 389 18.2. Background 390 18.3. The contact-impact problem 391 18.4. Formulation 395 18.5. Finite element formulation 398 18.6. Calculations 401 18.7. Discussion 405 18.8. Conclusions 410 18.9. Bibliography 412 Chapter 19. Parallel Computing for Non-linear Concrete Modeling 415 Kent DANIELSON, Mark ADLEY and James O DANIEL 19.1. Introduction 415 19.2. Explicit dynamic finite element analysis 416 19.3. Numerical methodologies 417 19.4. Numerical applications 421 19.5. Concluding remarks 429 19.6. Acknowledgments 430 19.7. Bibliography 431 List of Authors 433 Index 439

Product Details

  • ISBN13: 9781848211841
  • Format: Hardback
  • Number Of Pages: 442
  • ID: 9781848211841
  • weight: 812
  • ISBN10: 1848211848

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close