Electronics Engineering
9780128111666-01-000
9780128111666-01-000
9780128111666

https://www.whsmith.co.uk/products/metal-oxidebased-thin-film-structures-formation-characterization-and-application-of-interfacebased-p/nini-pryds/vicenzo-esposito/paperback/9780128111666-01-000.html
Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena (Metal Oxides)
Paperback
https://www.whsmith.co.uk/products/metal-oxidebased-thin-film-structures-formation-characterization-and-application-of-interfacebased-p/nini-pryds/vicenzo-esposito/paperback/9780128111666-01-000.html
£144.00
rrp
£160.00
Save £16.00 (10%)
Availability
Special Order item not currently available. We'll try and order for you
Reviews
About the Author
Nini Pryds is a Professor and head the research section 'Electrofunctional Materials' at the Department of Energy Conversion and Storage, The Technical University of Denmark (DTU), where he leads a group of about 35 researchers working in the field of magnetic refrigeration, thermoelectricity and functional oxide thin films. During the last 15 years he has played a leading role in a new cross-disciplinary research fields in the area of functional materials for energy application. In Denmark he has started and matured an area now known as magnetic refrigeration, which is based on the magnetocaloric effect. His group is recognized internationally as one of the leading group worldwide in this area. At DTU he also started the work on high temperature thermoelectric materials and his group succeeded to develop the highest zT p-type oxide materials reported so far. His group has developed a thermoelectric oxide module, which currently holds the highest efficiency oxide module. His interest includes also the area of epitaxial growth of complex oxides, which include materials physics of complex oxides. The most exciting result of his group is the creation of a metallic interface between amorphous oxide films and crystalline SrTiO3 (STO) controlled by chemical redox reactions at oxide interfaces. His group has also showed for the first time a new interface system, which exhibits electron mobilities greater than 100,000 cm2V-1s-1 at 2 K. An original concept of modulation-doped complex oxide interfaces by charge transfer which lead to the observation the quantum Hall effect at these oxide interfaces was developed in his group. Vincenzo Esposito is a Professor in "Ceramic Science and Engineering" and technology coordinator at Department of Energy Conversion and Storage, Technical University of Denmark. He developed his career at Riso DTU National Laboratory for Sustainable Energy, University of Rome "Tor Vergata", University of Florida, and at the Instituto de Pesquisas Energeticas e Nucleares (IPEN) - Brazil. His research interest is primarily on functional inorganic nano-materials and processing for emerging technologies in energy, catalysis, electromechanical, electronics, and electrochemical systems. His research profile lies at the frontiers between nanoionics, solid state chemistry and advanced materials processing. Recent highlights of his recent work are on nano-confinement of highly defective metal oxides interfaces to achieve new metastability domains, designing a new thermochemical methods to manipulate interfaces in ionotronic composites, and disclosing fast mass diffusion mechanisms in highly defective metal oxides. Ghenadii Korotcenkov received his Ph.D. in Physics and Technology of Semiconductor Materials and Devices in 1976, and his Doctor Habilitate Degree (Dr. Sci.) in Physics and Mathematics of Semiconductors and Dielectrics in 1990. Long time he was a leader of scientific Gas Sensor Group and manager of various national and international scientific and engineering projects carried out in Laboratory of Micro- and Optoelectronics, Technical University of Moldova. His research had financial support from International Foundations and Programs such as CRDF, MRDA, IREX, ICTP, INTAS, INCO-COPERNICUS, COST, NATO. Currently G. Korotcenkov is a research Professor in Gwangju Institute of Science and Technology, Republic of Korea.Specialists from Former Soviet Union know G. Korotcenkov's research results in the field of study of Schottky barriers, MOS structures, native oxides, and photoreceivers on the base of III-Vs compounds very well. His current research interests include material sciences and surface science, focused on metal oxides and solid state gas sensor design. Korotcenkov is the author of seven books and special issues and editor of 11 books. He published fifteen invited review papers, 19 book chapters, and more than 200+ peer-reviewed articles. He is a holder of 18 patents. He presented more than 200 reports on the N
More Details
- Contributor: Nini Pryds
- Imprint: Elsevier Science Publishing Co Inc
- ISBN13: 9780128111666
- Number of Pages: 560
- Packaged Dimensions: 152x229mm
- Packaged Weight: 860
- Format: Paperback
- Publisher: Elsevier Science Publishing Co Inc
- Release Date: 2017-09-11
- Series: Metal Oxides
- Binding: Paperback / softback
- Biography: Nini Pryds is a Professor and head the research section 'Electrofunctional Materials' at the Department of Energy Conversion and Storage, The Technical University of Denmark (DTU), where he leads a group of about 35 researchers working in the field of magnetic refrigeration, thermoelectricity and functional oxide thin films. During the last 15 years he has played a leading role in a new cross-disciplinary research fields in the area of functional materials for energy application. In Denmark he has started and matured an area now known as magnetic refrigeration, which is based on the magnetocaloric effect. His group is recognized internationally as one of the leading group worldwide in this area. At DTU he also started the work on high temperature thermoelectric materials and his group succeeded to develop the highest zT p-type oxide materials reported so far. His group has developed a thermoelectric oxide module, which currently holds the highest efficiency oxide module. His interest includes also the area of epitaxial growth of complex oxides, which include materials physics of complex oxides. The most exciting result of his group is the creation of a metallic interface between amorphous oxide films and crystalline SrTiO3 (STO) controlled by chemical redox reactions at oxide interfaces. His group has also showed for the first time a new interface system, which exhibits electron mobilities greater than 100,000 cm2V-1s-1 at 2 K. An original concept of modulation-doped complex oxide interfaces by charge transfer which lead to the observation the quantum Hall effect at these oxide interfaces was developed in his group. Vincenzo Esposito is a Professor in "Ceramic Science and Engineering" and technology coordinator at Department of Energy Conversion and Storage, Technical University of Denmark. He developed his career at Riso DTU National Laboratory for Sustainable Energy, University of Rome "Tor Vergata", University of Florida, and at the Instituto de Pesquisas Energeticas e Nucleares (IPEN) - Brazil. His research interest is primarily on functional inorganic nano-materials and processing for emerging technologies in energy, catalysis, electromechanical, electronics, and electrochemical systems. His research profile lies at the frontiers between nanoionics, solid state chemistry and advanced materials processing. Recent highlights of his recent work are on nano-confinement of highly defective metal oxides interfaces to achieve new metastability domains, designing a new thermochemical methods to manipulate interfaces in ionotronic composites, and disclosing fast mass diffusion mechanisms in highly defective metal oxides. Ghenadii Korotcenkov received his Ph.D. in Physics and Technology of Semiconductor Materials and Devices in 1976, and his Doctor Habilitate Degree (Dr. Sci.) in Physics and Mathematics of Semiconductors and Dielectrics in 1990. Long time he was a leader of scientific Gas Sensor Group and manager of various national and international scientific and engineering projects carried out in Laboratory of Micro- and Optoelectronics, Technical University of Moldova. His research had financial support from International Foundations and Programs such as CRDF, MRDA, IREX, ICTP, INTAS, INCO-COPERNICUS, COST, NATO. Currently G. Korotcenkov is a research Professor in Gwangju Institute of Science and Technology, Republic of Korea.Specialists from Former Soviet Union know G. Korotcenkov's research results in the field of study of Schottky barriers, MOS structures, native oxides, and photoreceivers on the base of III-Vs compounds very well. His current research interests include material sciences and surface science, focused on metal oxides and solid state gas sensor design. Korotcenkov is the author of seven books and special issues and editor of 11 books. He published fifteen invited review papers, 19 book chapters, and more than 200+ peer-reviewed articles. He is a holder of 18 patents. He presented more than 200 reports on the N
Delivery Options
Home Delivery
-
Saver Delivery In-Stock* products are usually delivered in 3-6 working daysFree
- Free On Orders Over £20
-
1st Class Delivery In-Stock* products ordered by 11am Monday - Friday are usually delivered the next day£3.99
Store Delivery
-
Store Delivery Free Delivery to a WHSmith StoreFree
Free Returns
We hope you are delighted with everything you buy from us. However, if you are not, we will refund or replace your order up to 30 days after purchase. Terms and exclusions apply; find out more from our Returns and Refunds Policy.