Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications

Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications

By: Paolo Arcioni (author), Luca Roselli (author), Apostolos Georgiadis (author), Hendrik Rogier (author)Hardback

1 - 2 weeks availability

Description

This book provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design, such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, and much more. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples. This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D.

Create a review

Contents

About the Editors xiii About the Authors xvii Preface xxxi List of Abbreviations xli List of Symbols xlv Part I DESIGN AND MODELING TRENDS 1 Low Coefficient Accurate Nonlinear Microwave and Millimeter Wave Nonlinear Transmitter Power Amplifier Behavioural Models 3 1.1 Introduction 3 1.1.1 Chapter Structure 4 1.1.2 LDMOS PA Measurements 4 1.1.3 BF Model 7 1.1.4 Modified BF Model (MBF) Derivation 8 1.1.5 MBF Models of an LDMOS PA 13 1.1.6 MBF Model Accuracy and Performance Comparisons 15 1.1.7 MBF Model the Memoryless PA Behavioural Model of Choice 22 Acknowledgements 24 References 24 2 Artificial Neural Network in Microwave Cavity Filter Tuning 27 2.1 Introduction 27 2.2 Artificial Neural Networks Filter Tuning 28 2.2.1 The Inverse Model of the Filter 29 2.2.2 Sequential Method 30 2.2.3 Parallel Method 31 2.2.4 Discussion on the ANN s Input Data 33 2.3 Practical Implementation Tuning Experiments 36 2.3.1 Sequential Method 36 2.3.2 Parallel Method 41 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency 43 2.5 Robots in the Microwave Filter Tuning 47 2.6 Conclusions 49 Acknowledgement 49 References 49 3 Wideband Directive Antennas with High Impedance Surfaces 51 3.1 Introduction 51 3.2 High Impedance Surfaces (HIS) Used as an Artificial Magnetic Conductor (AMC) for Antenna Applications 52 3.2.1 AMC Characterization 52 3.2.2 Antenna over AMC: Principle 55 3.2.3 AMC s Wideband Issues 55 3.3 Wideband Directive Antenna Using AMC with a Lumped Element 57 3.3.1 Bow-Tie Antenna in Free Space 57 3.3.2 AMC Reflector Design 59 3.3.3 Performances of the Bow-Tie Antenna over AMC 60 3.3.4 AMC Optimization 61 3.4 Wideband Directive Antenna Using a Hybrid AMC 64 3.4.1 Performances of a Diamond Dipole Antenna over the AMC 65 3.4.2 Beam Splitting Identification and Cancellation Method 69 3.4.3 Performances with the Hybrid AMC 73 3.5 Conclusion 78 Acknowledgments 80 References 80 4 Characterization of Software-Defined and Cognitive Radio Front-Ends for Multimode Operation 83 4.1 Introduction 83 4.2 Multiband Multimode Receiver Architectures 84 4.3 Wideband Nonlinear Behavioral Modeling 87 4.3.1 Details of the BPSR Architecture 87 4.3.2 Proposed Wideband Behavioral Model 89 4.3.3 Parameter Extraction Procedure 92 4.4 Model Validation with a QPSK Signal 95 4.4.1 Frequency Domain Results 95 4.4.2 Symbol Evaluation Results 98 References 99 5 Impact and Digital Suppression of Oscillator Phase Noise in Radio Communications 103 5.1 Introduction 103 5.2 Phase Noise Modelling 104 5.2.1 Free-Running Oscillator 104 5.2.2 Phase-Locked Loop Oscillator 105 5.2.3 Generalized Oscillator 107 5.3 OFDM Radio Link Modelling and Performance under Phase Noise 109 5.3.1 Effect of Phase Noise in Direct-Conversion Receivers 110 5.3.2 Effect of Phase Noise and the Signal Model on OFDM 110 5.3.3 OFDM Link SINR Analysis under Phase Noise 113 5.3.4 OFDM Link Capacity Analysis under Phase Noise 114 5.4 Digital Phase Noise Suppression 118 5.4.1 State of the Art in Phase Noise Estimation and Mitigation 119 5.4.2 Recent Contributions to Phase Noise Estimation and Mitigation 122 5.4.3 Performance of the Algorithms 128 5.5 Conclusions 129 Acknowledgements 131 References 131 6 A Pragmatic Approach to Cooperative Positioning in Wireless Sensor Networks 135 6.1 Introduction 135 6.2 Localization in Wireless Sensor Networks 136 6.2.1 Range-Free Methods 136 6.2.2 Range-Based Methods 139 6.2.3 Cooperative versus Noncooperative 142 6.3 Cooperative Positioning 142 6.3.1 Centralized Algorithms 143 6.3.2 Distributed Algorithms 144 6.4 RSS-Based Cooperative Positioning 147 6.4.1 Measurement Phase 147 6.4.2 Location Update Phase 148 6.5 Node Selection 150 6.5.1 Energy Consumption Model 152 6.5.2 Node Selection Mechanisms 153 6.5.3 Joint Node Selection and Path Loss Exponent Estimation 156 6.6 Numerical Results 160 6.6.1 OLPL-NS-LS Performance 164 6.6.2 Comparison with Existing Methods 164 6.7 Experimental Results 166 6.7.1 Scenario 1 166 6.7.2 Scenario 2 169 6.8 Conclusions 169 References 170 7 Modelling of Substrate Noise and Mitigation Schemes for UWB Systems 173 7.1 Introduction 173 7.1.1 Ultra Wideband Systems Developments and Challenges 174 7.1.2 Switching Noise Origin and Coupling Mechanisms 175 7.2 Impact Evaluation of Substrate Noise 176 7.2.1 Experimental Impact Evaluation on a UWB LNA 177 7.2.2 Results and Discussion 178 7.2.3 Conclusion 181 7.3 Analytical Modelling of Switching Noise in Lightly Doped Substrate 182 7.3.1 Introduction 182 7.3.2 The GAP Model 185 7.3.3 The Statistic Model 192 7.3.4 Conclusion 195 7.4 Substrate Noise Suppression and Isolation for UWB Systems 195 7.4.1 Introduction 195 7.4.2 Active Suppression of Switching Noise in Mixed-Signal Integrated Circuits 196 7.5 Summary 204 References 205 Part II APPLICATIONS 8 Short-Range Tracking of Moving Targets by a Handheld UWB Radar System 209 8.1 Introduction 209 8.2 Handheld UWB Radar System 210 8.3 UWB Radar Signal Processing 210 8.3.1 Raw Radar Data Preprocessing 211 8.3.2 Background Subtraction 212 8.3.3 Weak Signal Enhancement 213 8.3.4 Target Detection 214 8.3.5 Time-of-Arrival Estimation 215 8.3.6 Target Localization 217 8.3.7 Target Tracking 217 8.4 Short-Range Tracking Illustration 218 8.5 Conclusions 223 Acknowledgement 224 References 224 9 Advances in the Theory and Implementation of GNSS Antenna Array Receivers 227 9.1 Introduction 227 9.2 GNSS: Satellite-Based Navigation Systems 228 9.3 Challenges in the Acquisition and Tracking of GNSS Signals 230 9.3.1 Interferences 232 9.3.2 Multipath Propagation 232 9.4 Design of Antenna Arrays for GNSS 233 9.4.1 Hardware Components Design 234 9.4.2 Array Signal Processing in the Digital Domain 239 9.5 Receiver Implementation Trade-Offs 244 9.5.1 Computational Resources Required 244 9.5.2 Clock Domain Crossing in FPGAs/Synchronization Issues 247 9.6 Practical Examples of Experimentation Systems 248 9.6.1 L1 Array Receiver of CTTC, Spain 248 9.6.2 GALANT, a Multifrequency GPS/Galileo Array Receiver of DLR, Germany 253 References 272 10 Multiband RF Front-Ends for Radar and Communications Applications 275 10.1 Introduction 275 10.1.1 Standard Approaches for RF Front-Ends 275 10.1.2 Acquisition of Multiband Signals 276 10.1.3 The Direct-Sampling Architecture 277 10.2 Minimum Sub-Nyquist Sampling 278 10.2.1 Mathematical Approach 278 10.2.2 Acquisition of Dual-Band Signals 279 10.2.3 Acquisition of Evenly Spaced Equal-Bandwidth Multiband Signals 282 10.3 Simulation Results 284 10.3.1 Symmetrical and Asymmetrical Cases 284 10.3.2 Verification of the Mathematical Framework 285 10.4 Design of Signal-Interference Multiband Bandpass Filters 287 10.4.1 Evenly Spaced Equal-Bandwidth Multiband Bandpass Filters 288 10.4.2 Stepped-Impedance Line Asymmetrical Multiband Bandpass Filters 289 10.5 Building and Testing of Direct-Sampling RF Front-Ends 290 10.5.1 Quad-Band Bandpass Filter 290 10.5.2 Asymmetrical Dual-Band Bandpass Filter 291 10.6 Conclusions 293 References 294 11 Mm-Wave Broadband Wireless Systems and Enabling MMIC Technologies 295 11.1 Introduction 295 11.2 V-Band Standards and Applications 297 11.2.1 IEEE 802.15.3c Standard 297 11.2.2 ECMA-387 Standard 299 11.2.3 WirelessHD 300 11.2.4 WiGig Standard 301 11.3 V-Band System Architectures 302 11.3.1 Super-Heterodyne Architecture 302 11.3.2 Direct Conversion Architecture 303 11.3.3 Bits to RF and RF to Bits Radio Architectures 305 11.4 SiGeV-Band MMIC 306 11.4.1 Voltage Controlled Oscillator 307 11.4.2 Active Receive Balun 310 11.4.3 On-Chip Butler Matrix 313 11.4.4 High GBPsSiGeV-Band SPST Switch Design Considerations 317 11.5 Outlook 320 References 322 12 Reconfigurable RF Circuits and RF-MEMS 325 12.1 Introduction 325 12.2 Reconfigurable RF Circuits Transistor-Based Solutions 326 12.2.1 Programmable Microwave Function Arrays 326 12.2.2 PROMFA Concept 327 12.2.3 Design Example: Tunable Band Passfilter 331 12.2.4 Design Examples: Beamforming Network, LNA and VCO 333 12.3 Reconfigurable RF Circuits Using RF-MEMS 335 12.3.1 Integration of RF-MEMS and Active RF Devices 336 12.3.2 Monolithic Integration of RF-MEMS in GaAs/GaN MMIC Processes 337 12.3.3 Monolithic Integration of RF-MEMS in SiGeBiCMOS Process 342 12.3.4 Design Example: RF-MEMS Reconfigurable LNA 344 12.3.5 RF-MEMS-Based Phase Shifters for Electronic Beam Steering 348 12.4 Conclusions 353 References 353 13 MIOS: Millimeter Wave Radiometers for the Space-Based Observation of the Sun 357 13.1 Introduction 357 13.2 Scientific Background 358 13.3 Quiet-Sun Spectral Flux Density 359 13.4 Radiation Mechanism in Flares 361 13.5 Open Problems 361 13.6 Solar Flares Spectral Flux Density 363 13.7 Solar Flares Peak Flux Distribution 364 13.8 Atmospheric Variability 365 13.9 Ionospheric Variability 366 13.10 Antenna Design 369 13.11 Antenna Noise Temperature 371 13.12 Antenna Pointing and Radiometric Background 373 13.13 Instrument Resolution 373 13.14 System Overview 374 13.15 System Design 376 13.16 Calibration Circuitry 378 13.17 Retrieval Equations 381 13.18 Periodicity of the Calibrations 381 13.19 Conclusions 384 References 384 14 Active Antennas in Substrate Integrated Waveguide (SIW) Technology 387 14.1 Introduction 387 14.2 Substrate Integrated Waveguide Technology 388 14.3 Passive SIW Cavity-Backed Antennas 388 14.3.1 Passive SIW Patch Cavity-Backed Antenna 389 14.3.2 Passive SIW Slot Cavity-Backed Antenna 391 14.4 SIW Cavity-Backed Antenna Oscillators 395 14.4.1 SIW Cavity-Backed Patch Antenna Oscillator 395 14.4.2 SIW Cavity-Backed Slot Antenna Oscillator with Frequency Tuning 397 14.4.3 Compact SIW Patch Antenna Oscillator with Frequency Tuning 401 14.5 SIW-Based Coupled Oscillator Arrays 406 14.5.1 Design of Coupled Oscillator Systems for Power Combining 407 14.5.2 Coupled Oscillator Array with Beam-Scanning Capabilities 412 14.6 Conclusions 414 References 415 15 Active Wearable Antenna Modules 417 15.1 Introduction 417 15.2 Electromagnetic Characterization of Fabrics and Flexible Foam Materials 419 15.2.1 Electromagnetic Property Considerations for Wearable Antenna Materials 419 15.2.2 Characterization Techniques Applied to Wearable Antenna Materials 419 15.2.3 Matrix-Pencil Two-Line Method 420 15.2.4 Small-Band Inverse Planar Antenna Resonator Method 427 15.3 Active Antenna Modules for Wearable Textile Systems 436 15.3.1 Active Wearable Antenna with Optimized Noise Characteristics 436 15.3.2 Solar Cell Integration with Wearable Textile Antennas 445 15.4 Conclusions 451 References 452 16 Novel Wearable Sensors for Body Area Network Applications 455 16.1 Body Area Networks 455 16.1.1 Potential Sheet-Shaped Communication Surface Configurations 456 16.1.2 Wireless Body Area Network 460 16.1.3 Chapter Flow Summary 460 16.2 Design of a 2-D Array Free Access Mat 460 16.2.1 Coupling of External Antennas 462 16.2.2 2-D Array Performance Characterization by Measurement 464 16.2.3 Accessible Range of External Antennas on the 2-D Array 467 16.3 Textile-Based Free Access Mat: Flexible Interface for Body-Centric Wireless Communications 467 16.3.1 Wearable Waveguide 470 16.3.2 Summary on the Proposed Wearable Waveguide 475 16.4 Proposed WBAN Application 476 16.4.1 Concept 476 16.5 Summary 478 Acknowledgment 478 References 478 17 Wideband Antennas for Wireless Technologies: Trends and Applications 481 17.1 Introduction 481 17.1.1 Antenna Concept 482 17.2 Wideband Antennas 483 17.2.1 Travelling Wave Antennas 483 17.2.2 Frequency Independent Antennas 484 17.2.3 Self-Complementary Antennas 485 17.2.4 Applications 486 17.2.5 Ultra Wideband (UWB) Arrays: Vivaldi Antenna Arrays 489 17.2.6 Wideband Microstrip Antennas: Stacked Patch Antennas 495 17.3 Antenna Measurements 496 17.4 Antenna Trends and Applications 498 17.4.1 Phase Arrays and Smart Antennas 499 17.4.2 Wearable Antennas 502 17.4.3 Capsule Antennas for Medical Monitoring 503 17.4.4 RF Hyperthermia 503 17.4.5 Wireless Energy Transfer 503 17.4.6 Implantable Antennas 503 Acknowledgements 504 References 504 18 Concluding Remarks 509 Index 511

Product Details

  • publication date: 26/10/2012
  • ISBN13: 9781119944942
  • Format: Hardback
  • Number Of Pages: 574
  • ID: 9781119944942
  • weight: 1002
  • ISBN10: 1119944945

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close