Multiscale Geomechanics: From Soil to Engineering Projects

Multiscale Geomechanics: From Soil to Engineering Projects

By: Pierre-Yves Hicher (editor)Hardback

Up to 2 WeeksUsually despatched within 2 weeks

Description

This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927-2006), it can be of great use and interest to researchers and engineers alike. A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez's life-long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these scientific advancements into engineering practices. He innovated a multiscale approach of passing from the discontinuous medium formed by individual grains to an equivalent continuous medium. The first part of the book examines the behavior of soils at the level of their different constituents and at the level of their interaction. Behavior is then treated at the scale of the soil sample. The second part deals with soil mechanics from the vantage point of the construction project. It highlights Biarez's insightful adoption of the Finite Element Codes and illustrates, through numerous construction examples, his methodology and approach based on the general framework he constructed for soil behavior, constantly enriched by comparing in situ measurements with calculated responses of geostructures.

About Author

Pierre-Yves Hicher is Professor of Civil Engineering at Ecole Centrale de Nantes in France, specializing in soil behavior and constitutive modeling. His publications are numerous and well-known, particularly an early work Elementary Mechanics of Soil Behaviour (1994) co-authored with Jean Biarez.

Contents

Preface xi Acknowledgments xv Chapter 1. Jean Biarez: His Life and Work 1 Jean-Louis BORDES, Jean-Louis FAVRE and Daniel GRIMM 1.1. Early years and arrival in Grenoble 1 1.2. From Grenoble to Paris 4 1.3. The major research interests of Jean Biarez 8 1.4. Research and teaching 9 1.5. Conclusion 13 Chapter 2. From Particle to Material Behavior: the Paths Chartered by Jean Biarez 15 Bernard CAMBOU and Cecile NOUGUIER-LEHON 2.1. Introduction 15 2.2. The available tools, the variables analyzed and limits of the proposed analyses 16 2.3. Analysis of geometric anisotropy 18 2.4. Analysis of the distribution of contact forces in a granular material 21 2.5. Analysis of local arrays 24 2.6. Particle breakage 27 2.7. Conclusion 32 2.8. Bibliography 32 Chapter 3. Granular Materials in Civil Engineering: Recent Advances in the Physics of Their Mechanical Behavior and Applications to Engineering Works 35 Etienne FROSSARD 3.1. Behavior resulting from energy dissipation by friction 37 3.1.1. Introduction 37 3.1.2. Fundamentals 38 3.1.3. Main practical consequences 43 3.1.4. Conclusions 52 3.2. Influence of grain breakage on the behavior of granular materials 53 3.2.1. Introduction to the grain breakage phenomenon 53 3.2.2. Scale effect in shear strength 56 3.3. Practical applications to construction design 63 3.3.1. A new method for rational assessment of rockfill shear strength envelope 63 3.3.2. Incidence of scale effect on rockfill slope stability 65 3.3.3. Scale effects on deformation features 70 3.4. Conclusions 78 3.5. Bibliography 79 Chapter 4. Waste Rock Behavior at High Pressures: Dimensioning High Waste Rock Dumps 83 Edgar BARD, Maria EUGENIA ANABALON and Jose CAMPANA 4.1. Introduction 83 4.2. Development of new laboratory equipment for testing coarse materials 84 4.2.1. Triaxial and oedometric equipment at the IDIEM 85 4.3. Mining rock waste 86 4.3.1. In situ grain size distribution 86 4.3.2. Analyzed waste rock 87 4.4. Characterization of mechanical behavior of the waste rock 88 4.4.1. Oedometric tests 88 4.4.2. Triaxial tests 89 4.4.3. Oedometric test results 90 4.4.4. Triaxial test results 94 4.5. Evolution of density 102 4.6. Stability analysis and design considerations 104 4.7. Operation considerations 106 4.7.1. Basal drainage system 106 4.7.2. Water management 107 4.7.3. Foundation conditions 107 4.7.4. Effects of rain and snow 108 4.7.5. Effects of in situ leaching on waste rock 108 4.7.6. Designing for closure 109 4.8. Conclusions 109 4.9. Acknowledgements 110 4.10. Bibliography 110 Chapter 5. Models by Jean Biarez for the Behavior of Clean Sands and Remolded Clays at Large Strains 113 Jean-Louis FAVRE and Mahdia HATTAB 5.1. Introduction 113 5.2. Biarez s model for the oedometer test 115 5.3. Perfect plasticity state and critical void ratio 118 5.4. Normally and overconsolidated isotropic loading 122 5.4.1. Analogy between sands and clays 122 5.4.2. Normally consolidated state (ISL) 123 5.4.3. Overconsolidated state (Cs) 124 5.5. The drained triaxial path for sands and clays 126 5.5.1. The reference behavior 126 5.5.2. The mathematical model 127 5.6. The undrained triaxial path for sands 128 5.6.1. Simplified Roscoe formula for undrained consolidated soils 129 5.6.2. Modeling of the maxima under the right M on the plan q p' 130 5.7. Standard behavior for undrained sands 132 5.7.1. Normalization by the theoretical overconsolidation stress p'iC 132 5.7.2. Perfect plasticity normalization of the curves in the (q 1) plane and pore pressure variation 133 5.7.3. Initial stress p'0 normalization in the (q p) plane 133 5.8. The triaxial behavior of lumpy sands 134 5.8.1. Lump sands 134 5.8.2. The Roscoe model applied to lump sands 135 5.8.3. Synthesis of several lump sand behaviors 136 5.9. A new model to analyze the oedometer s path 138 5.9.1. Burland s model 138 5.9.2. Comparison of models and mixed model 141 5.9.3. Burland s model in (IL log 'v) Biarez s space 144 5.10. Destructuration of clayey sediments 144 5.11. Conclusion 145 5.12. Examples of manuscript notes 147 5.13. Bibliography 149 Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153 Said TAIBI, Jean-Marie FLEUREAU, Sigit HADIWARDOYO, Hanene SOULI and Antonio GOMES CORREIA 6.1. Introduction 153 6.2. Microstructural model for unsaturated porous media 160 6.3. Material and methods 164 6.3.1. Material and preparation of samples 164 6.3.2. Experimental devices and test procedures 165 6.3.3. Normalization of data 170 6.4. Experimental results 171 6.4.1. Isotropic compression paths 171 6.4.2. Deviatoric compression paths 72 6.4.3. Small strain behavior 173 6.5. Interpretation of results using the effective stress concept 174 6.5.1. Interpretation of large strain triaxial tests 175 6.5.2. Interpretation of small strain modulus measurements 176 6.6. Conclusions 177 6.7. Acknowledgements 178 6.8. Bibliography 178 Chapter 7. A Microstructural Model for Soils and Granular Materials 183 Pierre-Yves HICHER 7.1. Introduction 183 7.2. The micro-structural model 185 7.2.1. Inter-particle behavior 186 7.2.2. Stress strain relationship 189 7.2.3. Model parameters 190 7.3. Results of numerical simulation on Hostun sand 191 7.3.1. Drained triaxial tests 191 7.3.2. Undrained triaxial tests 195 7.4. Model extension to clayey materials 196 7.4.1. Remolded clays 198 7.4.2. Natural clays 200 7.5. Unsaturated granular materials 204 7.6. Summary and conclusion 214 7.7. Bibliography 216 Chapter 8. Modeling Landslides with a Material Instability Criterion 221 Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and Felix DARVE 8.1. Introduction 221 8.2. Study of the second-order work criterion 223 8.2.1. Analytical study 223 8.2.2. Physical interpretation 227 8.3. Petacciato landslide modeling 229 8.3.1. Site presentation 229 8.3.2. Description of the model used 231 8.3.3. Landslide computation 234 8.4. Conclusion 238 8.5. Bibliography 240 Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions 243 Arezou MODARESSI-FARAHMAND-RAZAVI 9.1. Notations 243 9.2. Introduction 247 9.3. Modeling soil behavior 248 9.3.1. Main characteristics of the soil s mechanical behavior 248 9.3.2. Constitutive models used for computation 253 9.3.3. Simplified model 254 9.3.4. Generalizing the simplified model 262 9.3.5. Mechanical behavior of non-saturated soil 265 9.3.6. Loading/unloading definition in plasticity 272 9.3.7. Multimechanism model 274 9.4. Parameter identification strategy for the ECP model 275 9.4.1. Classification and identification of the ECP model parameters 276 9.4.2. Directly measurable parameters 279 9.4.3. Parameters that are not directly measurable 288 9.4.4. Parameters defining the initial state 290 9.4.5. Application of parameter identification strategy 293 9.5. Influence of constitutive behavior on structural response 299 9.5.1. Retaining walls 299 9.5.2. Vertically loaded piles 304 9.5.3. Earth and rockfill dams 312 9.6. Conclusions 318 9.7. Acknowledgments 319 9.8. Appendix 319 9.9. Bibliography 323 Chapter 10. Evaluating Seismic Stability of Embankment Dams 333 Jean-Jacques FRY 10.1. Introduction 333 10.1.1. A tribute to Jean Biarez 333 10.1.2. Definitions 334 10.2. Observed seismic performance 335 10.2.1. Earthquake performance of gravity dams 335 10.2.2. Earthquake performance of buttress dams 336 10.2.3. Earthquake performance of arch dams 337 10.2.4. Earthquake performance of hydraulic fills 338 10.2.5. Earthquake performance of tailing dams 339 10.2.6. Earthquake performance of road embankments and levees 339 10.2.7. Earthquake performance of river hydroelectric embankments 339 10.2.8. Earthquake performance of small earth dams 340 10.2.9. Earthquake performance of large earth dams 342 10.2.10. Earthquake performance of large zoned dams with rockfill 344 10.2.11. Earthquake performance of concrete face rockfill dams 344 10.2.12. Dynamic performance of physical models 345 10.2.13. Assessment of seismic damage on dams 345 10.2.14. Major seismic damage of large concrete dams 346 10.2.15. Seismic damage of large embankment dams 347 10.2.16. Delayed or indirect consequences of an earthquake 347 10.3. Method for analyzing seismic risk 348 10.3.1. Seismic classification of dams in France 348 10.4. Evaluation of seismic hazard 350 10.4.1. Scenarios for dimensioning a particular situation 350 10.4.2. Choice of seismic levels 350 10.4.3. Choice of the seismic characteristics 351 10.4.4. Choice of accelerographs 352 10.5. Re-evaluation of seismic stability 355 10.5.1. Maximum risk associated with seismic loading: liquefaction 355 10.5.2. A recommended step-by-step methodology 357 10.5.3. Identification 357 10.5.4. Pseudo-static analysis of stability 358 10.5.5. Pseudo-static analysis of displacement 358 10.5.6. Analysis of the liquefaction risk 362 10.5.7. Coupled non-linear analysis 365 10.5.8. Analysis of post-seismic stability 367 10.5.9. Assessment 367 10.6. Semi-coupled modeling of liquefaction 368 10.6.1. Objectives 368 10.6.2. Constitutive model 368 10.6.3. Failure criterion 369 10.6.4. Shear strain law 370 10.6.5. Volumetric strain law: liquefaction 372 10.6.6. Model implementation 373 10.6.7. Model qualification in the case of the San Fernando Dam failure 373 10.6.8. Model application to fluvial dikes 380 10.7. Bibliography 387 List of Authors 393 Index 395

Product Details

  • ISBN13: 9781848212466
  • Format: Hardback
  • Number Of Pages: 412
  • ID: 9781848212466
  • weight: 752
  • ISBN10: 1848212461

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close