On Boundary Interpolation for Matrix Valued Schur Functions (Memoirs of the American Mathematical Society)

On Boundary Interpolation for Matrix Valued Schur Functions (Memoirs of the American Mathematical Society)

Paperback

Up to 2 WeeksUsually despatched within 2 weeks

Description

A number of interpolation problems are considered in the Schur class of $p\times q$ matrix valued functions $S$ that are analytic and contractive in the open unit disk. The interpolation constraints are specified in terms of nontangential limits and angular derivatives at one or more (of a finite number of) boundary points. Necessary and sufficient conditions for existence of solutions to these problems and a description of all the solutions when these conditions are met is given. The analysis makes extensive use of a class of reproducing kernel Hilbert spaces ${\mathcal{H}}(S)$ that was introduced by de Branges and Rovnyak. The Stein equation that is associated with the interpolation problems under consideration is analyzed in detail. A lossless inverse scattering problem is also considered.

Contents

Introduction Preliminaries Fundamental matrix inequalities On $\mathcal{H}(\Theta)$ spaces Parametrizations of all solutions The equality case Nontangential limits The Nevanlinna-Pick boundary problem A multiple analogue of the Caratheodory-Julia theorem On the solvability of a Stein equation Positive definite solutions of the Stein equation A Caratheodory-Fejer boundary problem The full matrix Caratheodory-Fejer boundary problem The lossless inverse scattering problem Bibliography.

Product Details

  • ISBN13: 9780821840474
  • Format: Paperback
  • Number Of Pages: 107
  • ID: 9780821840474
  • ISBN10: 0821840479

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close