Quantitative Human Physiology: An Introduction (Biomedical Engineering 2nd edition)

Quantitative Human Physiology: An Introduction (Biomedical Engineering 2nd edition)

Hardback

Special OrderSpecial Order item not currently available. We'll try and order for you.

Description

Quantitative Human Physiology: An Introduction, winner of a 2018 Textbook Excellence Award (Texty), is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects.

About Author

Dr. Feher is professor of Physiology and Biophysics at Virginia Commonwealth University. He received his Ph.D. from Cornell University, and has research interests in the quantitative understanding of the mechanisms of calcium uptake and release by the cardiac sarcoplasmic reticulum, in the mechanisms of calcium transport across the intestine, and in muscle contraction and relaxation. Dr. Feher developed a course in Introductory Quantitative Physiology at VCU and has been course coordinator for more than a decade. He also teaches muscle and cell physiology to medical and graduate students and is course coordinator for the Graduate Physiology survey course in physiology given at VCU's School of Medicine.

Contents

Unit 1: Physical and Chemical Foundations of Physiology 1.1. The Core Principles of Physiology 1.2. Physical Foundations of Physiology I: Pressure-Driven Flow 1.3. Physical Foundations of Physiology II: Electrical Force, Potential, Capacitance, and Current Problem Set 1.1. Physical Foundations: Pressure and Electrical Forces and Flows 1.4. Chemical Foundations of Physiology I: Chemical Energy and Intermolecular Forces 1.5. Chemical Foundations of Physiology II: Concentration and Kinetics 1.6. Diffusion 1.7. Electrochemical Potential and Free Energy Problem Set 1.2. Kinetics and Diffusion Unit 2: Membranes, Transport, and Metabolism 2.1. Cell Structure 2.2. DNA and Protein Synthesis 2.3. Protein Structure 2.4. Biological Membranes Problem Set 2.1. Surface Tension, Membrane Surface Tension, Membrane Structure, Microscopic Resolution, and Cell Fractionation 2.5. Passive Transport and Facilitated Diffusion 2.6. Active Transport: Pumps and Exchangers 2.7. Osmosis and Osmotic Pressure Problem Set 2.2. Membrane Transport 2.8. Cell Signaling 2.9. ATP Production I: Glycolysis 2.10. ATP Production II: The TCA Cycle and Oxidative Phosphorylation 2.11. ATP Production III: Fatty Acid Oxidation and Amino Acid Oxidation Unit 3: Physiology of Excitable Cells 3.1. The Origin of the Resting Membrane Potential 3.2. The Action Potential 3.3. Propagation of the Action Potential Problem Set 3.1. Membrane Potential, Action Potential, and Nerve Conduction 3.4. Skeletal Muscle Mechanics 3.5. Contractile Mechanisms in Skeletal Muscle 3.6. The Neuromuscular Junction and Excitation-Contraction Coupling 3.7. Muscle Energetics, Fatigue, and Training Problem Set 3.2. Neuromuscular Transmission, Muscle Force, and Energetics 3.8. Smooth Muscle Unit 4: The Nervous System 4.1. Organization of the Nervous System 4.2. Cells, Synapses, and Neurotransmitters 4.3. Cutaneous Sensory Systems 4.4. Spinal Reflexes 4.5. Balance and Control of Movement Problem Set 4.1. Nerve Conduction 4.6. The Chemical Senses 4.7. Hearing 4.8. Vision 4.2 Problem Set. Sensory Transduction 4.9. Autonomic Nervous System Unit 5: The Cardiovascular System 5.1. Overview of the Cardiovascular System and the Blood 5.2. Plasma and Red Blood Cells 5.3. White Blood Cells and Inflammation 5.4. The Heart as a Pump Problem Set 5.1. Blood 5.5. The Cardiac Action Potential 5.6. The Electrocardiogram 5.7. The Cellular Basis of Cardiac Contractility 5.8. The Cardiac Function Curve Problem Set 5.2. Cardiac Work 5.9. Vascular Function: Hemodynamics 5.10. The Microcirculation and Solute Exchange 5.11. Regulation of Perfusion 5.12. Integration of Cardiac Output and Venous Return 5.13. Regulation of Arterial Pressure Problem Set 5.3. Hemodynamics and Microcirculation Unit 6: Respiratory Physiology 6.1. The Mechanics of Breathing 6.2. Lung Volumes and Airway Resistance 6.3. Gas Exchange in the Lungs Problem Set 6.1. Airway Resistance and Alveolar Gas Exchange 6.4. Oxygen and Carbon Dioxide Transport 6.5. Acid-Base Physiology I: The Bicarbonate Buffer System and Respiratory Compensation 6.6. Control of Ventilation Problem Set 6.2. Gas Transport and pH Disturbances Unit 7: Renal Physiology 7.1. Body Fluid Compartments 7.2. Functional Anatomy of the Kidneys and Overview of Kidney Function 7.3. Glomerular Filtration Problem Set 7.1. Fluid Volumes, Glomerular Filtration, and Clearance 7.4. Tubular Reabsorption and Secretion 7.5. Mechanism of Concentration and Dilution of Urine 7.6. Regulation of Fluid and Electrolyte Balance 7.7. Renal Component of Acid-Base Balance Problem Set 7.2. Fluid and Electrolyte Balance and Acid-Base Balance Unit 8: Gastrointestinal Physiology 8.1. Mouth and Esophagus 8.2. The Stomach 8.3. Intestinal and Colonic Chemoreception and Motility 8.4. Pancreatic and Biliary Secretion 8.5. Digestion and Absorption of the Macronutrients 8.6. Energy Balance and Regulation of Food Intake Problem Set 8.1. Energy Balance Unit 9: Endocrine Physiology 9.1. General Principles of Endocrinology 9.2. Hypothalamus and Pituitary Gland 9.3. The Thyroid Gland 9.4. The Endocrine Pancreas and Control of Blood Glucose 9.5. The Adrenal Cortex 9.6. The Adrenal Medulla and Integration of Metabolic Control 9.7. Calcium and Phosphorus Homeostasis I: The Calcitropic Hormones 9.8. Calcium and Phosphorus Homeostasis II: Target Tissues and Integrated Control 9.9. Female Reproductive Physiology 9.10. Male Reproductive Physiology Problem Set 9.1. Ligand Binding

Product Details

  • ISBN13: 9780128008836
  • Format: Hardback
  • Number Of Pages: 1008
  • ID: 9780128008836
  • weight: 3080
  • ISBN10: 0128008830
  • edition: 2nd edition

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close