Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees

By: Lee Mosher (author), Michah Sageev (author), Kevin Whyte (author)Paperback

Up to 1 WeekUsually despatched within 1 week

Description

This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.

Product Details

  • ISBN13: 9780821847121
  • Format: Paperback
  • Number Of Pages: 105
  • ID: 9780821847121
  • ISBN10: 0821847120

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close