R and Data Mining: Examples and Case Studies

R and Data Mining: Examples and Case Studies

By: Yanchang Zhao (author)Hardback

Special OrderSpecial Order item not currently available. We'll try and order for you.

Description

R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more. Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation. With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis.

About Author

A Senior Data Mining Analyst in Australia Government since 2009. Before joining public sector, he was an Australian Postdoctoral Fellow (Industry) in the Faculty of Engineering & Information Technology at University of Technology, Sydney, Australia. His research interests include clustering, association rules, time series, outlier detection and data mining applications and he has over forty papers published in journals and conference proceedings. He is a member of the IEEE and a member of the Institute of Analytics Professionals of Australia, and served as program committee member for more than thirty international conferences.

Contents

Introduction Introduction, Data mining R Datasets used in this book Data Loading and Exploration Data Import/Export Save/Load R Data Import from and Export to .CSV Files Import Data from SAS Import/Export via ODBC Data Exploration Have a Look at Data Explore Individual Variables Explore Multiple Variables More Exploration Save Charts as Files Data Mining Examples Decision Trees Building Decision Trees with Package party Building Decision Trees with Package rpart Random Forest Regression Linear Regression Logistic Regression Generalized Linear Regression Non-linear Regression Clustering K-means Clustering Hierarchical Clustering Density-based Clustering Outlier Detection Time Series Analysis Time Series Decomposition Time Series Forecast Association Rules Sequential Patterns Text Mining Social Network Analysis Case Studies Case Study I: Analysis and Forecasting of House Price Indices Reading Data from a CSV File Data Exploration Time Series Decomposition Time Series Forecasting Discussion Case Study II: Customer Response Prediction Case Study III: Risk Rating using Decision Tree with Limited Resources Customer Behaviour Prediction and Intervention Appendix Online Resources R Reference Card for Data Mining Bibliography

Product Details

  • ISBN13: 9780123969637
  • Format: Hardback
  • Number Of Pages: 256
  • ID: 9780123969637
  • weight: 570
  • ISBN10: 0123969638

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close