
Relative Nonhomogeneous Koszul Duality: (Frontiers in Mathematics 1st ed. 2021)
By
Leonid Positselski (Author)
Paperback
In Stock
Quantity
Description
This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research.
This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare-Birkhoff-Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail. 1 Illustrations, black and white; XXIX, 278 p. 1 illus.
About the Author
Leonid Positselski received his Ph.D. in Mathematics from Harvard University in 1998. He did his postdocs at the Institute for Advanced Study (Princeton), Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette), Max-Planck-Institut fuer Mathematik (Bonn), the University of Stockholm, and the Independent University of Moscow in 1998-2003. He taught as an Associate Professor at the Mathematics Faculty of the National Research University Higher School of Economics in Moscow in 2011-2014. In Spring 2014 he moved from Russia to Israel, and since 2018 he work as a Researcher at the Institute of Mathematics of the Czech Academy of Sciences in Prague.He is an algebraist specializing in homological algebra. His research papers span a wide area including algebraic geometry, representation theory, commutative algebra, algebraic K-theory, and algebraic number theory.He is the author of four books and memoirs, including "Quadratic Algebras" (joint with A. Polishchuk, AMS University Lecture Series, 2005), "Homological algebra of semimodules and semicontramodules: Semi-infinite homological algebra of associative algebraic structures" (Monografie Matematyczne IMPAN, Birkhauser Basel, 2010), "Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence" (AMS Memoir, 2011), and "Weakly curved A-infinity algebras over a topological local ring" (Memoir of the French Math. Society, 2018-19).
More Details
- Contributor: Leonid Positselski
- Imprint: Springer Nature Switzerland AG
- ISBN13: 9783030895396
- Number of Pages: 278
- Packaged Dimensions: 168x240mm
- Packaged Weight: 525
- Format: Paperback
- Publisher: Springer Nature Switzerland AG
- Release Date: 2022-02-11
- Series: Frontiers in Mathematics
- Binding: Paperback / softback
- Biography: Leonid Positselski received his Ph.D. in Mathematics from Harvard University in 1998. He did his postdocs at the Institute for Advanced Study (Princeton), Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette), Max-Planck-Institut fuer Mathematik (Bonn), the University of Stockholm, and the Independent University of Moscow in 1998-2003. He taught as an Associate Professor at the Mathematics Faculty of the National Research University Higher School of Economics in Moscow in 2011-2014. In Spring 2014 he moved from Russia to Israel, and since 2018 he work as a Researcher at the Institute of Mathematics of the Czech Academy of Sciences in Prague.He is an algebraist specializing in homological algebra. His research papers span a wide area including algebraic geometry, representation theory, commutative algebra, algebraic K-theory, and algebraic number theory.He is the author of four books and memoirs, including "Quadratic Algebras" (joint with A. Polishchuk, AMS University Lecture Series, 2005), "Homological algebra of semimodules and semicontramodules: Semi-infinite homological algebra of associative algebraic structures" (Monografie Matematyczne IMPAN, Birkhauser Basel, 2010), "Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence" (AMS Memoir, 2011), and "Weakly curved A-infinity algebras over a topological local ring" (Memoir of the French Math. Society, 2018-19).
Delivery Options
Home Delivery
Store Delivery
Free Returns
We hope you are delighted with everything you buy from us. However, if you are not, we will refund or replace your order up to 30 days after purchase. Terms and exclusions apply; find out more from our Returns and Refunds Policy.