Skew-orthogonal Polynomials and Random Matrix Theory (CRM Monograph Series)

Skew-orthogonal Polynomials and Random Matrix Theory (CRM Monograph Series)


Up to 2 WeeksUsually despatched within 2 weeks


Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel - Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel - Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel - Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the use of the GCD promises to be efficient.

Product Details

  • ISBN13: 9780821848784
  • Format: Hardback
  • Number Of Pages: 127
  • ID: 9780821848784
  • ISBN10: 082184878X

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly