Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems

Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems

By: Olindo Isabella (author), Rene van Swaaij (author), Arno Smets (author), Klaus Jager (author)Paperback

Only 1 in stock

£22.49 RRP £24.99  You save £2.50 (10%) With FREE Saver Delivery

Description

This book uniquely covers both the physics of photovoltaic (PV) cells and the design of PV systems for real-life applications. - Fundamental principles of semiconductor solar cells. - PV technology: crystalline silicon solar cells; thin-film cells; PV modules; third-generation concepts. - PV systems, from simple stand-alone, to complex systems connected to the grid; components; design; deployment; performance. The book is an invaluable reference for researchers, industrial engineers and designers working in solar energy generation. The book is also ideal for university and third-level physics or engineering courses on solar photovoltaics, with exercises to check students' understanding and reinforce learning. It is the perfect companion to the Massive Open Online Course (MOOC) on Solar Energy (DelftX, ET.3034TU) presented by co-author Arno Smets. The course is available in English on the nonprofit open source edX.org platform, and in Arabic on edraak.org. Over 100,000 students have already registered for these MOOCs.

About Author

Arno Smets teaches and researches at Delft University of Technology. He presents the Massive Open Online Course (MOOC) on Solar Energy (DelftX, ET.3034 TU). Over 100,000 students have registered for the MOOC, which is available in both english and arabic. The authors' teaching and research activities at Delft University of Technology has resulted in this book. Their vision is to educate the next generation of solar technology innovators.

Contents

I. Introduction 1. Energy 2. Status and prospects of PV technology 3. The working principle of a solar cell II. PV Fundamentals 4. Electrodynamic basics 5. Solar radiation 6. Basic semiconductor physics 7. Generation and recombination of electron-hole pairs 8. Semiconductor junctions 9. Solar cell parameters and equivalent circuit 10. Losses and efficiency limits III. PV technology 11. A short history of solar cells 12. Crystalline silicon solar cells 13. Thin-film solar cells 14. A closer look tosome processes 15. PV modules 16. Third generation concepts IV. PV systems 17. Introduction to PV systems 18. Location issues 19. Components of PV systems 20. PV system design 21. PV System economics and ecology V. Alternative solar energy conversion technologies 22. Solar thermal energy 23. Solar fuels Appendix A. Derivations in electrodynamics B. Derivation of homojunctions J-V curves C. Some aspects of surface recombination D. The morphology of selected TCO samples E. Some aspects on location issues F. Derivations for DC-DC converters G. Fluid-dynamic model Bibliography Index

Product Details

  • ISBN13: 9781906860325
  • Format: Paperback
  • Number Of Pages: 488
  • ID: 9781906860325
  • weight: 1265
  • ISBN10: 1906860327

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close