The Action Principle and Partial Differential Equations. (AM-146), Volume 146 (Annals of Mathematics Studies 158)

The Action Principle and Partial Differential Equations. (AM-146), Volume 146 (Annals of Mathematics Studies 158)

By: Demetrios Christodoulou (author)Paperback

Up to 2 WeeksUsually despatched within 2 weeks

£69.30 RRP £77.00  You save £7.70 (10%) With FREE Saver Delivery

Description

This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.

About Author

Demetrios Christodoulou is Professor of Mathematics at Princeton University. He has been awarded a John and Catherine MacArthur Fellowship, as well as a John Simon Guggenheim Fellowship. His previous book The Global Nonlinear Stability of the Minkowski Space (Princeton), cowritten with Sergiu Klainerman, won the B cher Memorial Prize of the American Mathematical Society.

Contents

General Introduction 3 1 1.0 Introduction 7 1.1 The Lagrangian Picture 8 1.2 The Hamiltonian Picture 19 1.3 Examples 28 2 2.0 Introduction 51 2.1 The Canonlicd and Symplectic Forms 57 2.2 Symplectic Transformations 62 2.3 The Equations of Variation 79 2.4 The Circulation Theorem 84 2.5 The Euler System 87 2.6 Irrotational Solutions 96 2.7 The Equation of Continuity 99 3 3.0 Introduction 105 3.1 Compatible Currents 108 3.2 Null Currents and Null Lagragians 125 3.3 The Source Equations 128 3.4 The Generic Case n > 1 & m > 2 133 3.5 The Separable Case m > 2 141 3.6 The Case m = 2 144 3.7 Lie Flows and the Noether Current 146 4 4.1 Sections of Vector Bundles 159 5 5.0 Introduction 191 5.1 Relative Lagrangians 195 5.2 Ellipticity and Hyperbolicity 220 5.3 The Domain of Dependence 240 6 6.1 The Electromagnetic Field 263 6.2 Electromagnetic Symplectic Structure 272 6.3 Electromagnetic Compatible Currents 282 6.4 Causality in Electromagnetic etic Theory 299 Bibliography 315 Index 317

Product Details

  • ISBN13: 9780691049571
  • Format: Paperback
  • Number Of Pages: 328
  • ID: 9780691049571
  • weight: 454
  • ISBN10: 0691049572
  • translations: English
  • language of text: English

Delivery Information

  • Saver Delivery: Yes
  • 1st Class Delivery: Yes
  • Courier Delivery: Yes
  • Store Delivery: Yes

Prices are for internet purchases only. Prices and availability in WHSmith Stores may vary significantly

Close