
Towards a Modulo $p$ Langlands Correspondence for GL$_2$ (Memoirs of the American Mathematical Society)
By: Christophe Breuil (author), Vytautas Paskunas (author)PaperbackUp to 2 WeeksUsually despatched within 2 weeks
Description
The authors construct new families of smooth admissible $\overline{\mathbb{F}}_p$-representations of $\mathrm{GL}_2(F)$, where $F$ is a finite extension of $\mathbb{Q}_p$. When $F$ is unramified, these representations have the $\mathrm{GL}_2({\mathcal O}_F)$-socle predicted by the recent generalizations of Serre's modularity conjecture. The authors' motivation is a hypothetical mod $p$ Langlands correspondence.Product Details
- publication date: 30/03/2012
- ISBN13: 9780821852279
- Format: Paperback
- Number Of Pages: 114
- ID: 9780821852279
- ISBN10: 0821852272
Delivery Information
- Saver Delivery: Yes
- 1st Class Delivery: Yes
- Courier Delivery: Yes
- Store Delivery: Yes